Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Prophylactic Oral Administration of Magnesium Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through a Decrease of Colonic Accumulation of P2X7 Receptor-Expressing Mast Cells
Kenshi OhboriMakiko FujiwaraAkihiro OhishiKentaro NishidaYoshinobu UozumiKazuki Nagasawa
著者情報
ジャーナル フリー HTML

2017 年 40 巻 7 号 p. 1071-1077

詳細
抄録

The number of patients with colitis has been increasing year by year. Recently, intestinal inflammation, as one of the factors for its onset, has been demonstrated to be induced by P2X7 receptor-mediated activation of colonic immune cells such as mast cells. Activation of P2X7 receptor (P2X7R) is known to be inhibited by divalent metal cations such as magnesium, but whether or not magnesium administration prevents/relieves colitis is unknown so far. Here, we report that oral (per os (p.o.)) administration of MgCl2 and ingestion of commercially available magnesium-rich mineral hard water relieves dextran sulfate sodium (DSS)-induced colitis in mice. Colitis was induced through ingestion of a 3% (w/v) DSS solution ad libitum for 10 d. Brilliant blue G (BBG, a P2X7R antagonist), MgCl2 or magnesium-rich mineral hard water was administered p.o. to mice via gastric intubation once a day or ad libitum from a day before DSS administration for 11 times or 11 d, respectively. DSS-treated mice exhibited a low disease activity index, a short colon and a high histological score compared to in control mice. As BBG (250 mg/kg, p.o.), administration of a MgCl2 solution (100 or 500 mg/kg, p.o.) and ad libitum ingestion of the magnesium-rich mineral hard water (212 ppm as magnesium) partially, but significantly, attenuated the severity of colitis by decreasing the accumulation of P2X7R-immunopositive mast cells in the colon. Therefore, prophylactic p.o. administration/ingestion of magnesium is considered to be partially effective to protect mice against DSS-induced colitis by inhibiting P2X7R-mediated activation/accumulation of colonic mast cells.

Fullsize Image
著者関連情報
© 2017 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top