Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Induction of Growth Differentiation Factor 15 in Skeletal Muscle of Old Taurine Transporter Knockout Mouse
Takashi Ito Yukiko NakanishiNoriko YamajiShigeru MurakamiStephen W. Schaffer
著者情報
ジャーナル フリー HTML

2018 年 41 巻 3 号 p. 435-439

詳細
抄録

It has been identified that skeletal muscle is an endocrine tissue. Since skeletal muscle aging affects not only to muscle strength and function but to systemic aging and lifespan, myokines secreted from skeletal muscle may be crucial factors for intertissue communication during aging. In the present study, we investigated the expression of myokines associated with skeletal muscle aging in taurine transporter knockout (TauTKO) mice, which exhibit the accelerated skeletal muscle aging. Among transforming growth factor (TGF)-beta family genes, only growth and differentiation factor 15 (GDF15) was markedly higher (>3-fold) in skeletal muscle of old TauTKO mice compared with that of either young TauTKO mice or old wild-type mice. Circulating levels of GDF15 were also elevated in old TauTKO mice. An elevation in circulating GDF15 was also observed in very old (30-month-old) wild-type mice, while skeletal GDF15 levels were normal. The treatment of cultured mouse C2C12 myotubular cells with aging-related factors that mediate cellular stresses, such as oxidative stress (hydrogen peroxide) and endoplasmic reticulum stress (tunicamycin and thapsigargin), leads to an increase in GDF15 secretion. In conclusion, GDF15 is a myokine secreted by aging-related stress and may control aging phenotype.

Fullsize Image
著者関連情報
© 2018 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top