Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Cigarette Smoke Extract Modulates Functions of Peroxisome Proliferator-Activated Receptors
Midori MatsushitaKumi FutawakaMisa HayashiKana MurakamiMana MitsutaniMayuko HataiYukiko WatamotoNoriko YoshikawaKazuki NakamuraTetsuya TagamiKenji Moriyama
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2019 Volume 42 Issue 10 Pages 1628-1636

Details
Abstract

Cigarette smoke extract (CSE) contains many toxicants and may derange the physiological processes, such as cholesterol metabolism. We examined the impact of CSE on transcriptional regulation mediated peroxisome proliferator-activated receptors (PPARs) and its interaction with cofactors to elucidate differences in the molecular mechanism between CSE and other agonists of PPARs. We constructed several mutant PPARs (mPPARs) with amino acid substitution in the ligand-binding domain, which according to the molecular modeling, may affect the binding of agonists. In transient expression assays, each wild-type peroxisome proliferator-activated receptor (PPAR) mediated transcription stimulated by CSE was faintly yet significantly elevated compared to the control. The CSE-induced transcriptional activation was abolished in the H323A, H323Y, S342A, and H449A mPPARγs, although the activation elevated by pioglitazone was reserved. In the mPPARγ with Y473A and mPPARβ/δs with H286Y and Y436A, the pioglitazone-induced or L165041-activated transcriptional elevations were decreased and were lower than that of CSE-induced stimulation. These results suggested that CSE activated both mutant PPARs to be selectively different from those ligands. Mammalian two-hybrid assay illustrated that CSE could mildly recruit SRC1 or GRIP1 to the wild-type PPARγ. Representative ingredients, such as acrolein and crotonaldehyde present in CSE, could stimulate PPAR isoforms even at the toxicological concentrations and might possibly contribute to stimulatory effects. CSE mildly regulates the cholesterol metabolism-related genes, such as low density lipoprotein (LDL) receptor and Liver X receptor (LXR)β. In conclusion, these CSE effects the nuclear hormone receptors and their cofactors thereby disturbing metabolic phenomena. Therefore, CSE might be involved in cholesterol metabolism.

Graphical Abstract Fullsize Image
Content from these authors
© 2019 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top