Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Application of Human Induced Pluripotent Stem Cell-Derived Intestinal Organoids as a Model of Epithelial Damage and Fibrosis in Inflammatory Bowel Disease
Daichi OnozatoTakumi AkagawaYuriko KidaIsamu OgawaTadahiro HashitaTakahiro IwaoTamihide Matsunaga
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2020 Volume 43 Issue 7 Pages 1088-1095

Details
Abstract

Inflammatory bowel disease, which typically manifests as Crohn’s disease and ulcerative colitis, is caused by the abnormal production of cytokines such as tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β. These cytokines damage intestinal epithelial cells and trigger fibrosis, respectively, for which the current in vitro models have many limitations. Therefore, we tested whether human induced pluripotent stem cell-derived intestinal organoids (HiOs) can mimic inflammatory bowel disease (IBD), and whether such a model is suitable for drug screening. HiOs were treated with TNF-α and TGF-β to construct mucosal damage and fibrosis models. TNF-α diminished the mRNA expression of intestinal epithelial cell and goblet cell markers in HiOs. TNF-α also induced epithelial cell damage and degradation of tight junctions but not in the presence of infliximab, an antibody used in the clinic to deplete TNF-α. Furthermore, permeation of the non-absorbable marker FD-4 was observed in HiOs treated with TNF-α or ethylene glycol tetraacetic acid (EGTA), but not in the presence of infliximab. In contrast, TNF-α and TGF-β induced mRNA expression of mesenchymal and fibrosis markers, as well as epithelial–mesenchymal transition. SB431542, a TGF-β inhibitor, significantly reversed these events. The data indicate that HiOs mimic mucosal damage and fibrosis due to IBD and are thus suitable models for drug screening.

Graphical Abstract Fullsize Image
Content from these authors
© 2020 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top