EFFECTS OF NEUROLEPTIC BUTYROPHENONES ON PITUITARY-ADRENAL ACTIVITY IN RATS

TACHIO AIMOTO, MORIO Kaida, MASAKI Sato, MASAKI SATO, RYOHEI KIMURA, AND TOSHIRO MURATA

Shizuoka College of Pharmacy, 2-2-1, Oshika, Shizuoka 422, Japan
(Received June 20, 1979)

The effects of some neuroleptic butyrophenones such as haloperidol, clofoperol, trifluoperidol, leperone, moperone, and flupipamide on pituitary-adrenal activity were studied in rats following a single i.p. administration. All the drugs examined caused a marked increase in the plasma and adrenal corticosterone concentrations. The actions of haloperidol, clofoperol, and trifluoperidol were shown to be most potent, while flupipamide was the weakest among them. The stimulatory effect of the drugs on adrenocortical activity was completely inhibited by either dexamethasone pretreatment or hypophysectomy and was shown not to be merely due to a consequence of a drug-induced hypothermia.

These results indicate that the release of ACTH from the adenohypophysis is necessary for the drug action.

Keywords—haloperidol; neuroleptic butyrophenones; pituitary-adrenocortical activity; plasma and adrenal corticosterone; dexamethasone; hypophysectomy; hypothermia

INTRODUCTION

Haloperidol, a butyrophenone, is a potent neuroleptic drug and has been used extensively in clinical practice. This drug is also known to modify secretion of adenohypophysial hormones such as prolactin,1-7) growth hormone,4-7) thyroid stimulating hormone,4,7) luteinizing hormone,2,8) follicle stimulating hormone,3,8) and adrenocorticotropic hormone (ACTH),8) resulting in the hyper- or hypo-function of the target glands.4,7,9-11)

A single12) or chronic13) administration of droperidol (dehydrobenzperidol) was reported to cause hypersecretion of corticosteroid in rats, while a single administration of droperidol14) or a chronic coadministration of haloperidol and spiroperidol15) elevated plasma cortisol levels in man. Relatively high doses of haloperidol,11) trifluoperidol11) or clofoperol16) caused enlargement of adrenals of rats, when they were treated chronically. When rats were treated chronically with haloperidol or clofoperol, an elevation of plasma cortisol levels was observed.16) These adrenal responses to the butyrophenones suggest an increase in activity of pituitary-adrenal axis. The effects of these drugs on pituitary-adrenal activity, however, are less clear.

The purpose of this study, therefore, is to investigate the acute effects of some butyrophenones; mainly of haloperidol, on pituitary-adrenal activity in rats by examining the changes in plasma and adrenal corticosterone concentrations.

MATERIALS AND METHODS

Drugs and Chemicals—Haloperidol, clofoperol, and trifluoperidol (Dainippon Pharmaceutical Co., Ltd.), flupipamide (Eisai Co., Ltd.), leperone (Kaken Chemical Co., Ltd.), moperone (Yamanouchi Pharmaceutical Co., Ltd.) were used in this experiment. All butyrophenones used were hydrochlorides. Corticosterone was ob-
tained from Sigma Chemical Co., dexamethasone phosphate (Decadron®) from Banyu Pharmaceutical Co., Ltd. and synthetic ACTH1-24 (Cortrosyn®) from Daichi Pharmaceutical Co., Ltd. All other chemicals were of reagent grade.

Animals — Female Wistar rats (60—80 days old, 140—170 g body weight) were housed at 24±2°C on a 12–12 hr light–dark cycle (06:00 light onset) and maintained on a laboratory chow (Oriental Yeast Co., Ltd.) and water ad libitum. They were acclimatized to both handling and i.p. injection of 0.1 ml of 0.9% saline twice daily for at least 5 consecutive days before the experiments. To avoid influences of daily fluctuations in plasma corticosterone levels, the experiments were carried out between 08:00 and 11:00 with the exception of the time course study which was performed between 08:00 and 18:30.

Time Course and Dose Response — The time course of adrenocortical responsiveness to haloperidol was assessed by killing rats at various times following the i.p. administration of 5 μmol/kg of the drug or vehicle at 08:00. In the dose–response study, rats received various doses of the butyrophenones i.p. and were sacrificed 1 hr after drug administration.

Site of Drug Action — To determine whether the drug was acting directly on the adrenal cortex, rats were pretreated with 5 mg/kg of dexamethasone i.p. 1 hr prior to receiving 5 μmol/kg of haloperidol i.p. In another experiment, rats were hypophysectomized by the transauricular approach 24 hr before receiving the butyrophenones (10 μmol/kg, i.p.), ACTH (10 U/kg, s.c.) or vehicle (i.p.). Completeness of hypophysectomy was confirmed by visual inspection at autopsy.

Induction of Hypothermia — Rats received graded doses of haloperidol i.p. and their rectal temperatures were determined with an electrothermometer (Natsune Seisakusyo) 0.5 and 1 hr later.

Dissociation from Hypothermia — As cold stress activates the pituitary-adrenal system, it was important to determine whether the effect of haloperidol was merely a secondary consequence of drug-induced hypothermia. Rats were, therefore, habituated for 10 days to a 38.5°C plastic cage which was warmed on a water–bath. On day 11 they were removed briefly for the i.p. injection of 10 μmol/kg of the drug, immediately returned to the cage, and then killed 1 hr later. Any significant fall in body temperature of drug-treated animals was not observed in this method (the warmed cage procedure).

Corticosterone Determination — The animals were killed by decapitation within 15 sec after removal from cages. Plasma samples were obtained by collecting trunk blood in heparinized tubes and centrifuging at 1500 × g for 15 min at room temperature. Plasma aliquots of 2.0 ml were stored at −20°C for subsequent assay. Adrenals, trimmed of adherent fat tissue, were weighed and frozen at −20°C. The plasma and adrenal corticosterone contents were determined according to the spectrofluorimetric methods of Zaneker and Bernstein, and Givner and Rochefort, respectively.

RESULTS

Time Course of Effect of Haloperidol on Plasma Corticosterone Levels

As shown in Fig. 1, a maximum response of plasma corticosterone to the drug occurred at 1 hr and then the plasma corticosterone decreased to its minimum level at 3 hr after drug administration. On the other hand, the plasma corticosterone in control groups was in low level for up to 3 hr after vehicle treatment. From about 3 hr after treatment, the plasma corticosterone concentrations in both drug-treated and control groups were gradually elevated as reflected by daily rhythms. However the plasma concentration of corticosterone in drug-treated rats 6 hr after dosing was still significantly higher than that in control rats.

Dose–Response of Plasma and Adrenal Corticosterone to Butyrophenones

The responses of plasma and adrenal corticosterone to haloperidol were examined by killing rats 1 hr after drug treatment, since this was found to be the time of maximum corticosterone response in the time course study. The response of plasma corticosterone to haloperidol was shown to be ap-
proximately dose-dependent (Table I). Similar responses of the adrenal corticosterone to haloperidol were also observed (Table I). The responses of plasma and adrenal corticosterone to other butyrophenones such as clofepropranol, trifluperidol, lenperone, moiperone, and floropipamide are also presented in Table I. Although the extent of responses varied with the drugs tested, all these drugs caused increases in both the plasma and adrenal corticosterone levels as haloperidol did. Haloperidol, clofepropranol, and trifluperidol were the most potent drugs examined and floropipamide was the least.

Site of Drug Action

Dexamethasone, a potent inhibitor of ACTH secretion, would be expected to block the corticosterone elevation if the butyrophenones did not directly stimulate the adrenal. As shown in Fig. 2, dexamethasone did not modify any resting plasma corticosterone level, but completely blocked the plasma corticosterone elevation following haloperidol administration. In other experiments, both haloperidol and clofepropranol failed to increase the plasma corticosterone in hypophysectomized rats whose adrenal cortices retained the normal responsiveness to exogenous ACTH (Fig. 3). Clofepropranol, the most potent neuroleptic among the butyrophenones used, unexpectedly suppressed the plasma corticosterone levels. The suppression by the drug was stronger at 2 hr than at 1 hr after dosing.

Dissociation from Hypothermia

The changes in the rectal temperature following haloperidol injection were examined, because this drug could induce hypothermia as reported by Massott (1970). Haloperidol (10 μmol/kg) produced a decrease of 1.4°C in the rectal temperature at 1 hr. To examine whether the plasma corticosterone response is simply a consequence of hypothermia induced by the drug or not, the body
TABLE I. Effects of Neuroleptic Butyrophenones on Plasma and Adrenal Corticosterone Levels in Rats

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (µmol/kg)</th>
<th>Plasma (µg/100 ml)</th>
<th>Adrenal (µg/10 mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>6.9±0.8 (13)</td>
<td>0.17±0.02 (14)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>35.0±8.6* (12)</td>
<td>0.38±0.08* (12)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>5</td>
<td>96.6±9.3* (5)</td>
<td>0.42±0.09* (6)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>115.8±2.9* (4)</td>
<td>0.95±0.03* (5)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>50.3±5.7* (7)</td>
<td>0.49±0.04* (8)</td>
</tr>
<tr>
<td>Clofibrate</td>
<td>5</td>
<td>102.4±13.1* (5)</td>
<td>0.73±0.15* (5)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>109.6±4.1* (8)</td>
<td>0.72±0.03* (9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>47.8±9.2* (5)</td>
<td>0.39±0.09* (6)</td>
</tr>
<tr>
<td>Trifluoridol</td>
<td>5</td>
<td>110.6±4.5* (5)</td>
<td>0.80±0.03* (5)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>113.9±3.5* (6)</td>
<td>0.82±0.03* (6)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.6±1.4 (6)</td>
<td>0.13±0.03 (6)</td>
</tr>
<tr>
<td>Lenperone</td>
<td>5</td>
<td>95.9±5.5* (5)</td>
<td>0.58±0.06* (6)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>121.1±6.2* (4)</td>
<td>0.88±0.04* (6)</td>
</tr>
<tr>
<td>Moperone</td>
<td>5</td>
<td>16.8±4.5 (6)</td>
<td>0.14±0.01 (6)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50.1±6.3* (4)</td>
<td>0.33±0.06* (6)</td>
</tr>
<tr>
<td>Floropipamide</td>
<td>20</td>
<td>39.8±10.0* (6)</td>
<td>0.32±0.11 (6)</td>
</tr>
</tbody>
</table>

Each value indicates the mean±S.E. for the number of animals in parenthesis.
The animals were dosed with the drug or vehicle i.p. at 08:00 and killed by decapitation 1 hr later.
a) Significantly different from control at a p value of 0.05 or less.

TABLE II. Hypothermia Induced by Haloperidol in Rats

<table>
<thead>
<tr>
<th>Dose (µmol/kg)</th>
<th>Group</th>
<th>0.5 hr</th>
<th>Rectal temperature (°)</th>
<th>ΔT</th>
<th>1 hr</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Control</td>
<td>38.7 ± 0.1</td>
<td>38.5 ± 0.1</td>
<td>(−0.4)*</td>
<td>38.1 ± 0.1</td>
<td>(−0.4)*</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>38.3 ± 0.1</td>
<td>39.0 ± 0.1</td>
<td>(−0.4)*</td>
<td>38.6 ± 0.1</td>
<td>(−0.4)*</td>
</tr>
<tr>
<td>5</td>
<td>Control</td>
<td>38.9 ± 0.1</td>
<td>38.4 ± 0.1</td>
<td>(−0.7)*</td>
<td>37.0 ± 0.3</td>
<td>(−1.4)*</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>38.7 ± 0.1</td>
<td>38.4 ± 0.1</td>
<td>(−0.7)*</td>
<td>37.0 ± 0.3</td>
<td>(−1.4)*</td>
</tr>
</tbody>
</table>

Each value indicates the mean±S.E. for 5 to 6 animals.
The animals were dosed with the drug or vehicle i.p. and their rectal temperatures were determined with an electrothermometer 0.5 and 1 hr after dosing.
a) Significantly different from control at a p value of 0.05 or less.

temperature in drug-treated animals was maintained normally by the warmed cage procedure. As shown in Fig. 4, the pituitary–adrenocortical effect of the drug was shown to be independent of its hypothermic action, since placement of animals in a 38.5° cage resulted in no attenuation of the plasma corticosterone response. Mean plasma corticosterone concentrations (µg/100 ml±S.E.) were as follows: at 24±2° (control, 6.9±0.8; drug-treated, 115.8±2.9, Table I); at 38.5° (control,
FIG. 3. Effects of Haloperidol and Clofuperol on Plasma Corticosterone Levels in Hypophysectomized Rats

Data are the mean±S.E. (vertical bars) for 5 to 6 animals. The animals were dosed with the drug (10 μmol/kg, i.p.), ACTH (10 U/kg, s.c.) or vehicle (i.p.) 24 hr after hypophysectomy.

Open column, control; stippled column, haloperidol; diagonally hatched column, clofuperol; closed column, ACTH.

a) Significantly different from control at a p value of 0.05 or less.

6.8±0.5; drug-treated, 113.2±6.4).

DISCUSSION

Several reports have shown that droperidol causes increased corticosteroidogenesis in the adrenals of rats,12,13 and that droperidol14) and some other neuroleptic butyrophenones15) cause a raise in plasma cortisol levels in man.

The present study with some butyrophenones such as haloperidol, clofuperol, trifluperidol, lenperone, moperone, and floropipamide showed the elevation of plasma corticosterone in rats. The strength of the stimulatory effect was decreased in the order of haloperidol, clofuperol, and trifluperidol > lenperone > moperone > floropipamide. The order seems to approximately correlate with their pharmacological activities.24) The stimulation of adrenocortical activity is completely inhibited by either dexamethasone pretreatment or hypophysectomy, indicating that the site of drug action is not the adrenal cortex and that the effect of the drugs does require ACTH secretion from the adenohypophysis. Our study also shows that the effect is not a secondary consequence of a drug-induced fall in body temperature.

Haloperidol19) and melperone25) have also been known as potent stimulators of prolactin release from the pituitary. Several lines of evidence have indicated that prolactin inhibits adrenal 5α-reductase activity followed by decreasing intradrenal metabolism of corticosterone.26-28) The metabolic consequence leads to increase in the output of corticosterone from the adrenals. The increased output of corticosterone by prolactin is much less than by ACTH, since prolactin, unlike

FIG. 4 Effect of Blocking Haloperidol-induced Hypothermia on Plasma Corticosterone Response

Data are the mean±S.E. (vertical bars) for 5 animals. The animals were habituated to a 38.5° cage for 10 days prior to the experiment. Then they were dosed with the drug (10 μmol/kg) or vehicle i.p. and killed by decapitation 1 hr later.

Open column, control; stippled column, haloperidol.

a) Significantly different from control at a p value of 0.001.
ACTH, does not stimulate steroidogenesis per se with increased production of corticosterone from precursor. But the elevation of the plasma and adrenal corticosterone observed in this study seems to result, at least in part, from the action on the adrenals of prolactin released by haloperidol and other butyrophenones used. The mechanisms by which the drugs activate the pituitary-adrenocortical system are still unknown and are under investigation.

Besides stimulatory effects, clofuperol suppresses the plasma corticosterone levels in hypophysectomized rats. In our previous reports, the drug has shown to interfere with the structure of biological membrane and to have a high affinity for the adrenals. Thus, it is possible that the drug may interact nonspecifically with the adrenocortical cell membrane and the resulting membrane stabilization may cause decreased secretion of the corticosteroids. In intact animals, the effect of ACTH released by the drug seems likely to precede or overcome direct action of the drug on the adrenals. But the detailed mechanisms by which the drug acts on the adrenals are not yet clarified.

Acknowledgement The authors wish to express their appreciation to Miss M. Fujimura for expert technical assistance; to Daininpon Pharmaceutical Co., Ltd. for a generous supply of haloperidol, clofuperol, and trifluoperidol; to Eisai Co., Ltd. for floropipamide; to Kaken Chemical Co., Ltd. for leperone, and to Yamanouchi Pharmaceutical Co., Ltd. for moperone.

REFERENCES
17) V.Jonec: A dynamic analysis of the mechanisms involved in acute activation of the pituitary—adrenocortical system

