EFFECT OF DIISOPROPYL 1,3-DITHIOL-2-YLIDENEMALONATE ON MICROSONAL ELECTRON TRANSPORT SYSTEM IN RAT LIVER

MINORU KATO, MITSUKAZU KITADA,* TETSURO SATOH,** HARUO KITAGAWA,* TATSUYOSHI SUGIMOTO AND TSUTOMU KASAI**

Laboratory of Biochemical Pharmacology and Biontoxicology, Department of Drug Evaluation and Toxicological Sciences, Faculty of Pharmaceutical Sciences, Chiba University,* Chiba 260, Japan and Biological Research Center, NHON NOHYAKU Co., Ltd.,** Kawachinagano, Osaka 586, Japan

(Received January 21, 1980)

Effect of diisopropyl 1,3-dithiol-2-yldenemalonate (NKK-105) on the components of rat liver microsomal electron transport system was investigated by comparison with those of phenobarbital, 3-methylcholanthrene and polychlorinotated biphenyl. When NKK-105 was administered to rats at a dose of 250 mg/kg/day for 7 days, cytochrome b6 content and NADPH-cytochrome c reductase activity were significantly increased but cytochrome P-450 content to the lesser extent. Three inducers of the drug metabolizing enzymes remarkably increased cytochrome P-450 content but increased cytochrome b6 content to a lesser extent.

Keywords—diisopropyl 1,3-dithiol-2-yldenemalonate; NKK-105; cytochrome b6; enzyme induction; microsomal electron transport system; cytochrome P-450; NADPH-cytochrome c reductase

Diisopropyl 1,3-dithiol-2-yldenemalonate (NKK-105) (Chart 1) has been reported to have several pharmacologic actions in rats, and to induce the microsomal drug metabolizing enzymes in rat liver.

![Chemical Structure of NKK-105](attachment:image)

Chart 1. Chemical Structure of NKK-105

The present study was, therefore, undertaken to determine the effect of NKK-105 on microsomal electron transport system associated with cytochrome P-450-mediated drug metabolism.

Male Sprague-Dawley rats weighing approximately 180 g were used. They were treated with NKK-105 in olive oil at a dose of 250 mg/kg/day for 7 days. Phenobarbital (PB), 3-methylcholanthrene (MC) and polychlorinated biphenyl (KC-400, PCB), which were dissolved in olive oil were intraperitoneally administered at a dose of 40 mg/kg/day for 4 days. Control rats received equal volume of the solvent for 4 days. Twenty-four hr after the final administration of the drugs, the rats were sacrificed by cervical dislocation. They were fasted for 18 hr prior to sacrifice, but had free access to tap water. Livers were rapidly removed, weighed, perfused with 1.15% KCl solution and homogenized in 4 vols. of the same solution. After centrifugation at 9000 g for 20 min, the microsomal pellet was obtained by further centrifugation at 105000 g for 1 hr. After washing once with the KCl solution, the pellet was suspended in 0.1 M Na/K phosphate buffer (pH 7.5) in a protein concentration of approx-
TABLE I. Effect of NKK-105, PB, MC and PCB on the Components of Microsomal Electron Transport System in Rat Liver

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Body weight (g)</th>
<th>RLW*</th>
<th>Microsomal Cyt. P-450 protein (mg/g liver)</th>
<th>Cyt. b5 (μmol/g liver)</th>
<th>Fp1 (μmol/min/g liver)</th>
<th>Fp2 (μmol/h/g liver)</th>
<th>p-Nitroanisole O-demethylase (μmol/h/g liver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>190±4</td>
<td>3.2±0.1</td>
<td>281±3.6</td>
<td>241±1.2</td>
<td>8.0±0.3</td>
<td>127±11</td>
<td>0.85±0.01</td>
</tr>
<tr>
<td>NKK-105</td>
<td>188±9</td>
<td>3.7±0.1*</td>
<td>32.3±1.9</td>
<td>370±2.3**</td>
<td>182±1.0**</td>
<td>185±15*</td>
<td>0.93±0.69***</td>
</tr>
<tr>
<td>PB</td>
<td>195±8</td>
<td>3.7±0.1**</td>
<td>31.6±0.2</td>
<td>63.0±4.7***</td>
<td>10.0±0.9</td>
<td>168±10</td>
<td>5.54±0.74***</td>
</tr>
<tr>
<td>MC</td>
<td>188±4</td>
<td>4.1±0.2***</td>
<td>27.6±1.3</td>
<td>56.2±4.2***</td>
<td>13.6±0.9**</td>
<td>139±8</td>
<td>3.65±0.19</td>
</tr>
<tr>
<td>PCB</td>
<td>190±6</td>
<td>3.6±0.1**</td>
<td>29.3±1.4</td>
<td>59.5±5.3***</td>
<td>16.0±1.3**</td>
<td>173±25</td>
<td>6.22±0.54**</td>
</tr>
</tbody>
</table>

Each value is expressed as the mean ± S.E. from 4 rats.

a) Relative liver weight ratio (g/100 g).

NKK-105 was administered orally at a dose of 250 mg/kg/day for 7 days and PB, MC and PCB were administered intraperitoneally at a dose of 40 mg/kg/day for 4 days.

* p < 0.05 vs. control; ** p < 0.01 vs. control; *** p < 0.001 vs. control (Student’s t-test).

Ultimately 10 mg/ml. Cytochrome P-450, cytochrome b5, NADH-cytochrome b5 reductase (fp1), NADPH-cytochrome c reductase (fp2) and p-nitroanisole O-demethylase were assayed according to the methods previously reported. Microsomal protein content was determined by Lowry’s method.

The effect of NKK-105 on the components of microsomal electron transport system in rat liver was compared to those in PB-, MC- and PCB-pretreated rats. As shown in Table I, administration of NKK-105 caused a remarkable increase in both cytochrome b5 content and fp2 activity, and cytochrome P-450 content and p-nitroanisole O-demethylase activity were also increased to a lesser extent. MC and PCB increased cytochrome P-450 content rather than cytochrome b5, however, PB caused no increase in cytochrome b5 content. The ratios of cytochrome P-450 to cytochrome b5 were 3.0 in control, 2.0 in NKK-105-treated and 3.7–6.3 in other inducer-treated rats, respectively. Griseofulvin and AF-2 were known to increase cytochrome b5 content and, conversely, decreased cytochrome P-450 content. Recently, ethoxyquin, an antioxidant, has been reported to enhance both cytochrome b5 and cytochrome P-450 content to the same extent. In comparison with the changes in cytochrome b5 and cytochrome P-450 contents by three chemical agents, NKK-105 was characterized to increase cytochrome b5 more significantly, as compared to the increase in cytochrome P-450 content in rats.

REFERENCES

7) A.H.Phillips and R.G.Landon: Hepatic triphosphopyridine nucleotide-cytochrome c reduc-
Cytochrome b_5 Induction by NKK-105

