EFFECTS OF VITAMIN E DEPLETION AND REPLETION ON RENIN RELEASE FROM RENIN GRANULES

SHIRO MORIMOTO, YASUO MATSUMURA, YUKIHIRO OHNO AND NOBUAKI MIYAWAKI
Department of Pharmacology, Osaka College of Pharmacy, 2-10-65 Kawai, Matsubara, Osaka, 580, Japan
(Received June 9, 1983)

The present study was carried out to investigate the effects of vitamin E-deficiency and supplementation of α-tocopheryl acetate (TOCA) on renin release from renin granules. Male Wistar rats were fed either a control or a vitamin E-deficient diet for 4 weeks. Subsequently, the vitamin E-deficient rats received dietary supplementation of TOCA (40 mg/100 g diet) for 5 d. The renin granule fraction was prepared from the kidney cortex homogenate by a discontinuous sucrose density gradient centrifugation. The intake of vitamin E-deficient diet for 4 weeks resulted in an increased level of endogenous lipid peroxides in the renin granule fraction, accompanied by a marked decrease in α-tocopherol content, and led to a significant increase in the rate of renin release from the granules during incubation at 37°C. These changes in α-tocopherol content, lipid peroxide level and renin release in the renin granule fraction were restored to the control values by dietary TOCA supplementation. Similarly, dietary supplementation of N,N'-diphenyl-p-phenylenediamine (80 mg/100 g diet), which has an antioxidative ability, suppressed the increases in lipid peroxidation and renin release due to vitamin E-deficiency, although this compound was ineffective in restoring α-tocopherol levels. These results suggest that vitamin E functions in maintenance of membrane integrity of renin granules by inhibiting the lipid peroxidation.

Keywords—rat renin granule; vitamin E-deficiency; dietary supplementation of α-tocopheryl acetate; renin release; α-tocopherol content; lipid peroxidation

INTRODUCTION

Since the membranes of subcellular organelles contain a large amount of unsaturated phospholipids and since the function of a cell would be influenced by the nature of phospholipids, the peroxidation of phospholipids might induce membrane damage and impairment of cellular function.1–8 On the other hand, vitamin E reacts rapidly with free radicals, and its presence in the cellular and subcellular membranes is the first line of defence against peroxidation of polyunsaturated fatty acid constituents of vital phospholipids.7,8

In a recent paper, we demonstrated that renin release from renin granules was markedly stimulated by ascorbic acid or ferrous ions, accompanied by increased formation of lipid peroxides in the renin granule fraction.9 Furthermore, we found that the rate of renin release from the granules was augmented by dietary vitamin E-deficiency.10 The present study was designed to further investigate the effects of in vivo repletion of this vitamin on renin release from the granules of vitamin E-deficient rats.

MATERIALS AND METHODS

Animals and Diets — Male Wistar rats weighing 70–80 g were used. For at least 1 week before the study, the rats were fed a standard laboratory rat chow (Oriental Yeast Co., MF) and received tap water ad libitum. The animals were divided into control and experimental groups. The experimental animals were maintained on a vitamin E-deficient basal diet consisted of the components described in Table I, while the control animals were given a control diet prepared by the addition of 2 mg of dl-α-tocopheryl acetate (TOCA) to 100 g of the basal diet for 4 weeks. Subsequently,
parts of vitamin E-deficient animals received dietary supplementation of TOCA or \(N,N' \)-diphenyl-\(p \)-phenylenediamine (DPPD) for 5 d. The supplemental diet of TOCA or DPPD was prepared by the addition of 40 mg of TOCA or 80 mg of DPPD to 100 g of vitamin E-deficient basal diet.

Processing of Blood Samples and Preparation of Kidney Cortex Homogenate — The peritoneal cavity was opened under pentobarbital anesthesia (30 mg/kg, i.p.), and the renal artery and vein were ligated. Both kidneys were removed and immediately cooled. An arterial blood sample was withdrawn through the aorta with a syringe wetted with heparin, immediately cooled, and centrifuged. The kidney cortex was removed from the medulla, sectioned into thin slices, and homogenized with ice-cold physiological saline (1:8, w/v). The homogenate and plasma were analyzed for \(\alpha \)-tocopherol and lipid peroxides.

Preparation of Renin Granule Fraction — Renin granule fraction was prepared from the kidney cortex by discontinuous sucrose density gradient centrifugation.\(^{11,12}\) Renal cortical slices were homogenized with ice-cold 0.45 M sucrose (1:8, w/v). After separating the unbroken cells, cell debris, and nuclei by centrifugation at 500 \(\times \) g for 10 min, the homogenate was layered on a discontinuous sucrose density gradient solution (1.2 M to 1.7 M with 0.1 M intervals) and centrifuged at 60000 \(\times \) g for 90 min. Renin granules were mainly equilibrated in the fraction corresponding to 1.5 M sucrose. This fraction was used for measuring \(\alpha \)-tocopherol and lipid peroxide contents, and the amount of renin release from the granules.

Incubation System for Renin Granule Fraction — Half ml of renin granule fraction (0.45—0.50 mg protein) was suspended in 0.5 ml of 0.1 M Tris-HCl buffer (pH 7.4) containing 0.15 M KCl, and incubated at 37°C for 60 min or 120 min. The incubation mixture was separated into the supernatant and sediment by centrifugation at 105000 \(\times \) g for 60 min. The sediment was suspended in Tris-HCl buffer (pH 7.4). The supernatant and sediment were analyzed for renin activity.

Renin Assay — Renin activity in the sample was measured by radioimmunoassay of angiotensin I\(^{13}\) generated after incubation with semi-purified rat renin substrate, which was prepared according to the procedure described previously.\(^{14}\) The incubation medium consisted of: 1) samples containing renin, 50 \(\mu l \); 2) renin substrate dissolved in 0.25 M phosphate buffer (pH 7.0) containing 20 mM EDTA, 0.5 ml; 3) 5% disopropylphosphorofluoridate, 20 \(\mu l \); 4) 6.6% 8-hydroxyquinoline sulfate, 10 \(\mu l \); 5) 10% dimercaprol, 3 \(\mu l \). After incubation at 37°C for 15 min, the reaction was stopped by heating for 5 min in a boiling water bath. Total renin was taken to be sum of renin content in the supernatant and sediment, and the amount of renin release during incubation was expressed as a percentage of total renin.

Measurement of \(\alpha \)-Tocopherol Content — The plasma \(\alpha \)-tocopherol content was determined following the method of Abe and Katsui.\(^{15}\) A mixture of 0.2 ml of plasma and 1.0 ml of ethanol was vigorously shaken with 4.0 ml of \(n \)-hexane. The mixture was centrifuged at 3000 rpm for 10 min, and fluorescence of \(n \)-hexane layer was

<table>
<thead>
<tr>
<th>TABLE I. Components of Basal Vitamin E-Deficient Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Corn starch</td>
</tr>
<tr>
<td>Casein</td>
</tr>
<tr>
<td>Alpha starch of wheat</td>
</tr>
<tr>
<td>Powdered filter paper</td>
</tr>
<tr>
<td>Salt mixture</td>
</tr>
<tr>
<td>Granulated sugar</td>
</tr>
<tr>
<td>Vitamin mixture(^a)</td>
</tr>
<tr>
<td>Stripped corn oil</td>
</tr>
</tbody>
</table>

\(a \) One gram of vitamin mixture contains 500 IU vitamin A, 1.2 mg vitamin B\(_1\), 4.0 mg vitamin B\(_2\), 0.8 mg vitamin B\(_6\), 0.5 mg vitamin B\(_{12}\), 30 mg vitamin C, 100 IU vitamin D\(_3\), 5.2 mg vitamin K\(_3\), 20 mg biotin, 0.2 mg folic acid, 5 mg calcium pantothenate, 5 mg \(p \)-aminobenzoic acid, 6 mg niacin, 6 mg inositol, and 200 mg choline chloride.
measured with excitation at 295 nm and emission at 320 nm using a Hitachi model 650-40 fluorescence spectrophotometer. α-Tocopherol solution (2 μg/ml) dissolved in ethanol was used as an external standard. The plasma α-tocopherol content was expressed as μg per dl. The α-tocopherol contents in the kidney cortex homogenate and renin granule fraction were determined according to the method of Taylor et al.\(^{16}\) After 0.5 ml of 25% ascorbic acid and 1.0 ml of ethanol were added to 1.5 ml each of the homogenate and renin granule fraction, each mixture was incubated with 1.0 ml of 10 N KOH at 37°C for 30 min, and then extracted with 4.0 ml of n-hexane. Analytical procedures for fluorescence of n-hexane layer and the external standard were similar to those used in the measurement of plasma α-tocopherol. The α-tocopherol contents in the kidney cortex and renin granule fraction were expressed as nmol per mg of protein.

Measurement of Lipid Peroxides — Malondialdehyde (MDA) production, as measured by the thiobarbituric acid (TBA) test, served as an index of lipid peroxidation. Plasma lipid peroxides were determined according to the method of Yagi.\(^{17}\) Twenty μl of plasma was mixed with 4.0 ml of 1/12 N sulfuric acid and 0.5 ml of 10% phosphotungstic acid, and the mixture was centrifuged at 3000 rpm for 10 min. The sediment was suspended in 40 ml of distilled water, and then heated with 1.0 ml of 0.67% TBA at 95°C for 60 min. The reaction product was extracted with 5.0 ml of n-butanol, and measured fluorometrically with excitation at 515 nm and emission at 553 nm using a Hitachi model 650-40 fluorescence spectrophotometer. Tetraethoxypropane was used as the standard, and lipid peroxide formation in plasma was expressed in terms of MDA (nmol per ml of plasma).

Lipid peroxides in the kidney cortex homogenate and renin granule fraction were determined according to the method of Ohkawa et al.\(^{18}\) The reaction mixture consisted of: 1) sample, 0.2 ml; 2) 8.1% sodium dodecyl sulfate, 0.2 ml; 3) 20% acetate buffer (pH 3.5), 1.5 ml; 4) 0.8% TBA, 1.5 ml. The mixture was heated at 95°C for 60 min, and reaction product was extracted with 5.0 ml of the mixture of n-butanol and pyridine (15:1, v/v). Analytical procedures for fluorescence of organic solvent phase were the same as those for plasma lipid peroxides. Lipid peroxide formation in the kidney cortex homogenate and renin granule fraction was expressed in terms of MDA (nmol per mg of protein).

Measurement of Protein Content — The protein content was determined by the method of Lowry et al.\(^{19}\)

Statistical Analysis — All values were expressed as the mean ± S.E. Student's t-test was used to determine whether differences between the experimental and control groups were significant. Differences were not considered significant if p > 0.05.

RESULTS

Throughout the experimental period, no significant difference could be detected in average body weight or kidney weight per 100 g of body weight between the control and experimental rats. We checked vitamin E status of each animal by the hemolytic action of dialuric acid on erythrocytes.\(^{20}\) The animals maintained on the control and vitamin E-deficient diets for 4 weeks showed 0.5 ± 0.3% and 93.7 ± 3.0% erythrocyte hemolysis, respectively. But, dietary supplementation of TOCA or DPPD for further 5 d prevented effectively erythrocyte hemolysis due to vitamin E-deficiency, i.e., erythrocytes of the animals received TOCA and DPPD exhibited 0.4 ± 0.2% and 0.9 ± 0.7% hemolysis, respectively.

As shown in Table II, the intake of vitamin E-deficient diet for 4 weeks resulted in the decreases in the mean α-tocopherol contents of plasma and kidney cortex tissues, being 16% and 26% of each control value. The reduced α-tocopherol levels in these preparations were restored to the control levels by dietary supplementation of TOCA, but not at all by dietary supplementation of DPPD.

Vitamin E-deficient rats had almost a threefold increase in the plasma lipid peroxide level. However, this increased level of plasma lipid peroxides was suppressed below the control value.
by dietary supplementation of TOCA or DPPD, although no significant differences could be detected between the control and supplemented groups. Similar results were obtained with lipid peroxide formation in the kidney cortex tissues (Table II).

A negative correlation between α-tocopherol content and lipid peroxide formation was also observed in the renin granule fraction of vitamin E-deficient rats. As shown in Table III, the α-tocopherol content in the renin granule fraction was decreased to 27% of control value by the intake of vitamin E-deficient diet for 4 weeks while lipid peroxide formation in this fraction was increased to 160% of control value. These alterations in α-tocopherol content and lipid peroxide formation were restored to each control level by dietary TOCA supplementation for a further 5 d. On the other hand, dietary DPPD supplementation completely restored the increased level of lipid peroxides to the control value, but did not affect the α-tocopherol content in the renin granule fraction, as observed in plasma of vitamin E-deficient rats.

Fig. 1 shows the effect of vitamin E-deficiency and supplementation of TOCA and DPPD on

TABLE II. Effects of Vitamin E-Deficiency and Supplementation of TOCA or DPPD on α-Tocopherol Content and Lipid Peroxide Formation in Plasma and Kidney Cortex

<table>
<thead>
<tr>
<th>Diet</th>
<th>α-Tocopherol content</th>
<th>Lipid peroxide formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasma (mg/dl)</td>
<td>Kidney cortex (ng/mg protein)</td>
</tr>
<tr>
<td>Control</td>
<td>1.17±0.04</td>
<td>86.7±5.0</td>
</tr>
<tr>
<td>Vitamin E-deficient</td>
<td>0.19±0.01 a,b)</td>
<td>22.3±4.4 b)</td>
</tr>
<tr>
<td>TOCA supplemented</td>
<td>1.46±0.07 a,d)</td>
<td>87.9±6.4 d)</td>
</tr>
<tr>
<td>DPPD supplemented</td>
<td>0.21±0.01 b)</td>
<td>20.4±3.3 b)</td>
</tr>
</tbody>
</table>

Each value represents the mean ± S.E. of six animals. a) p < 0.01, b) p < 0.001; significantly different from each control group, c) p < 0.01, d) p < 0.001; significantly different from each vitamin E-deficient group.

TABLE III. Effects of Vitamin E-Deficiency and Supplementation of TOCA or DPPD on α-Tocopherol Content and Lipid Peroxide Formation in the Renin Granule Fraction

<table>
<thead>
<tr>
<th>Diet</th>
<th>α-Tocopherol content (ng/mg protein)</th>
<th>Lipid peroxide formation (nmol MDA/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>108.6±18.7</td>
<td>1.30±0.10</td>
</tr>
<tr>
<td>Vitamin E-deficient</td>
<td>28.8±9.3 a)</td>
<td>2.08±0.30 a)</td>
</tr>
<tr>
<td>TOCA supplemented</td>
<td>135.7±24.1 b)</td>
<td>1.15±0.12 b)</td>
</tr>
<tr>
<td>DPPD supplemented</td>
<td>29.6±8.8 a)</td>
<td>1.01±0.16 b)</td>
</tr>
</tbody>
</table>

Each value represents the mean ± S.E. of four separate experiments. a) p < 0.05; significantly different from each control group, b) p < 0.05; significantly different from each vitamin E-deficient group.
FIG. 1. Effects of Vitamin E-Deficiency and Supplementation of TOCA or DPPD on Renin Release from Renin Granules

Each column represents the mean ± S.E. of four separate experiments. ■: control; □: vitamin E-deficient; ●: TOCA supplemented; □□□□: DPPD supplemented.

a) \(p < 0.01 \); significantly different from each control group; b) \(p < 0.05 \); c) \(p < 0.01 \); significantly different from each vitamin E-deficient group.

myopathy, erythrocyte and leucocyte abnormalities, and testicular degeneration.21−24 Deficiency of this vitamin has also shown to cause damage of membrane structure and failures of metabolic function in a variety of subcellular organelles.25−28 In the present study, we found that a lack of dietary vitamin E increased the amount of renin release from renin granules, accompanied by an increased level of endogenous lipid peroxides in the renin granule fraction. The same increase in endogenous lipid peroxides was observed in the plasma and kidney cortex tissues of vitamin E-deficient rats. Erythrocytes of these animals exhibited approximately 94% hemolysis against dialytic acid.

It is thought that vitamin E has an important role in terminating peroxidative reactions of polyunsaturated fatty acid, because of its antioxidant capacity and lipophilic character.8 It has also been suggested that because of the amphiphilic structure, vitamin E has a strong physical interaction with polyunsaturated fatty acids in the membranes.7 This vitamin is predominantly present in the membranes of the cells and subcellular organelles and only limited amounts are found in the soluble fraction.29 When the properties of high physical interaction and antioxidant capacity are combined, one expects an important stabilizing action of this vitamin in the biomembranes. In this study, oral supplementation of TOCA to the vitamin E-deficient animals suppressed the elevation of lipid peroxide formation in the renin granule fraction as well as the plasma and kidney cortex tissues, which returned to each control value 5 d after supplementation. Simultaneously, the elevated of renin release from the granules due to vitamin E depletion was completely restored to the control value. In addition, the high degree of erythrocytes hemolysis induced by vitamin E-deficiency returned to the normal value. These findings suggest that there is a close association between lipid peroxide formation and renin release in the renin granule fraction and that vitamin E acts as a lipid antioxidant in the membranes of renin granules.

To further examine the correlation between renin release from the granules. When the renin granule fraction of control rats was incubated at 37°C for 60 min, 24.8 ± 0.9% of total renin appeared in the medium. In vitamin E-deficient rats, the higher rate of renin release (32.5 ± 1.8% of total renin) was observed with incubation of renin granule fraction under the same conditions.

In addition, incubation of this fraction at 37°C for 120 min led to a further increase in renin release (43.0 ± 2.3% of total renin) compared with the control value (27.5 ± 0.9% of total renin). However, the stimulatory effect of vitamin E-deficiency on renin release was not observed in rats supplemented with TOCA and the rate of renin release was completely restored to the control value. The same results were obtained with DPPD supplementation to the vitamin E-deficient rats.

DISCUSSION

Vitamin E-deficiency has been shown to produce various pathological conditions, such as
lipid peroxidation and renin release in the renin granule fraction, we conducted DPPD supplementation to vitamin E-deficient rats. DPPD is well known to have a strong antioxidative effect on lipid peroxidation in microsomes and mitochondria, although its antihemolytic ability is lower than that of TOCA. Thus, in the present study, DPPD supplemented diet, which contained twice amounts of DPPD (80 mg/100 g diet) compared with TOCA (40 mg/100 g diet) supplemented diet, was given to vitamin E-deficient rats. DPPD supplementation for 5 d suppressed the elevated levels of lipid peroxides in the plasma, kidney cortex tissues and renin granule fraction following vitamin E-deficiency to the control values, although this agent did not affect the reduced levels of α-tocopherol in these preparations. Simultaneously, the high rate of renin release from the granules of vitamin E-deficient rats was returned to the control value. Thus, we confirmed that there is a positive correlation between lipid peroxidation and renin release in the renin granule fraction.

The findings in the present study indicate that dietary TOCA supplementation shows a protective effect against increases in lipid peroxidation and renin release in the renin granule fraction by vitamin E-deficiency. These results strongly suggest that vitamin E functions in maintenance of membrane integrity of renin granules by inhibiting the lipid peroxidation.

Acknowledgements We wish to thank the Eisai Co., Ltd., Tokyo, Japan for providing the vitamin E-deficient diet and dl-α-tocopheryl acetate.

REFERENCES

