Use of Transcriptional-Enhancer Elements Responsive to ras, Protein Kinase A and Protein Kinase C to Evaluate Inhibitors of Specific Signal Transduction Pathways

Toshie Kanbe, a Kayoko S. Tsuchiya, a Makoto Hori, a Satoshi Yaginuma, b Yuko Murakami, c Satoshi Mizuno, c and Yoshimasa Uehara* c

Showa College of Pharmaceutical Sciences, a Machida-shi, Tokyo 194, Japan, Asahi Chemical Industry Co., Ltd. b
Ohito, Shizuoka 410-23, Japan, and Department of Bioactive Molecules, National Institute of Health, c 1–23–1 Toyama, Shinjuku-ku, Tokyo 162, Japan. Received December 16, 1993; accepted February 2, 1994

To evaluate ras-mediated signal transduction, we constructed a transient transfection assay system that measures chloramphenicol acetyl transferase activity expressed under the transcriptional-enhancer elements responsive to ras, protein kinase C, and protein kinase A in NIH3T3 cells. Characterization of the assay system with several known activators and inhibitors of signal transduction pathways proved that our system could reliably evaluate agents that affect individual pathways. Pirarubicin ((2'R)-4'-tetrahydropyranylandriamycin, THP), which has recently been found to reverse ras-transformed cells, appeared to selectively inhibit the ras signal transduction pathway.

Keywords ras; anthracycline; transfection; signal transduction pathway; transcriptional enhancer element

Mammalian ras proteins (p21 ras or Ras) are believed to be involved in signal-transduction mechanisms and to play an important role in the control of cell proliferation and differentiation.1) Point mutations of ras oncogenes at positions 12, 13, 59 or 61 in their coding sequences lead to the constitutive activation of the proteins and are implicated in the transformation of many types of malignant tumors in humans.1) Inhibitors of Ras-mediated signal transduction pathways may therefore be effective as antitumor agents. We recently found that some of the anthracycline antitumor antibiotics that are used clinically, such as doxorubicin and pirarubicin, but not aclacinomycin, selectively reversed transformed phenotypes of ras, but not src, oncogene-expressed cells in vitro,2) and inhibited the growth of solid tumors of K-ras-NIH3T3 cells transplanted into nude mice.3) However, the molecular mechanisms underlying this selective effect on ras-transformed cells remain unknown.

To examine the capacity of pirarubicin to inhibit ras stimulated signal transduction in ras-transformed cells, we employed systems consisting of cells expressing a chloramphenicol acetyl transferase (CAT) reporter gene that was placed under the transcriptional control of a ras responsive element (RRE). The RRE has been shown to be activated by an oncogenic form of ras.4) Control plasmids containing the same reporter gene under the transcriptional control of the cyclic AMP response element (CRE) and the TPA response element (TRE) were also constructed. TRE has been shown to be activated by both TPA and ras.5) In this study, we first characterized these transcriptional elements for their ability to respond to stimulators and inhibitors of signal transduction pathways and then examined the effects of anthracycline antibiotics on the transcriptional activation of these response elements.

MATERIALS AND METHODS

Materials Pirarubicin and aclacinomycin were gifts from Dr. T. Takeuchi, Institute of Microbial Chemistry (Tokyo, Japan). Lovastatin, in the inactive lactone form, was provided by Dr. T. Kobayashi, Sankyō Co., Ltd. (Tokyo, Japan). It was converted to the active form as described elsewhere.6) H-7 and H-89 were purchased from Seikagaku Kogyo Co., Ltd. (Tokyo, Japan), chelerythrine and 12-O-tetradecanoylphorbol-13-acetate (TPA) were from LC Laboratories (MA, U.S.A.), and forskolin and 3-isobutyl-1-methylxanthine (IBMX) were from Sigma Chemical Co. (MO, U.S.A.).

Plasmids pH1,7) a v-Ha-ras expression plasmid including Ha-MuSV whole genome, was provided by JCRB (Japanese Cancer Research Resources Bank). pGC1, a CAT expression plasmid, contains a 1440 bp mouse ß-globin major gene promoter region8) (−1414 to +26 with respect to the RNA cap site) upstream of the CAT gene (Eco RI-Bam HI fragment from pSV2CAT).9) pRVS-SEAP10) was a gift from Dr. B. R. Cullen and a plasmid containing a ß-galactosidase gene driven by the RSV-LTR (pRSV-ßgal)11) was the gift of Dr. S. Yamagoe, National Institute of Health, Japan.

Construction of Reporter Plasmids Plasmid pGC3 was constructed by replacing the 1292 bp 5' region of the promoter (−1414 to −123) of pGC1 with an Xho I linker. Double-stranded oligonucleotides including each of the ras-responsive enhancer element (RRE: AGGATGACTCTTTGG corresponding to −117 to −101 of ras responsive NVL3 U3 region)),40) the TPA response element (TRE: CGAGGAAGTGAATCTACTGACCG)51) and the cAMP response element (CRE: ATGGCCGTCA-TACTGTCAGT)12) were synthesized. All had Xho I and Sal I cutting ends upstream and downstream, respectively. These oligonucleotides wereimerized, and cloned into the Xho I site in pGC3 (Fig. 1). The repeating number of response elements in each pGC3 construct was confirmed by the dideoxynucleotide sequencing method.13)

Cell Culture and Transient Transfection The cell lines used were NIH3T3 and its v-Ha-ras oncogene transformed derivative.14) Cells were cultured in Dulbecco's modified Eagle medium (DMEM) containing 10% calf

© 1994 Pharmaceutical Society of Japan
serum (GIBCO) at 37°C in a humidified atmosphere containing 5% CO₂.

For transfection experiments, cells were seeded at 6×10^5 to 8×10^5 cells per 10-cm-diameter dish or 2.5×10^5 to 5×10^5 cells per 6-cm-diameter dish and 24 h later the cells were transfected with DNA using the procedure of Chen and Okayama. A total of 20 µg DNA was added to each 10-cm-diameter dish. As an internal control, pRSV-βgal was included in the DNA precipitates.

In experiments comparing the expression of reporter plasmids in NIH3T3 and v-Ha-ras NIH3T3, NIH3T3 (5 × 10⁵) or v-Ha-ras NIH3T3 (3 × 10⁵) cells were plated on a 6-cm-diameter dish 1 d prior to transfection. The cells were transfected with 8 µg reporter and 2 µg pRSV-βgal plasmids. The cells were then incubated with the DNA co-precipitates for 5 to 6 h, washed with phosphate buffered-saline (PBS), treated with fresh medium containing 10% fetal bovine serum and incubated for 48 h.

For transient expression of ras, the expression plasmid pH1 was used with pRSV-SEAP as a control. In cotransfection experiments, NIH3T3 cells (2.5 × 10⁵) were plated on a 6-cm-diameter dish 1 d prior to transfection. To each dish was added 3.3 µg reporter, 3.3 µg pH1 and 1.3 µg pRSV-βgal. After incubation for 5 to 7 h, the calcium phosphate-DNA coprecipitates were removed by washing the cells with PBS. Fresh medium containing 10% calf serum was then added to the dish and the cells were incubated for an additional 40 h.

For assays involving treatment of transfected cells with stimulators or inhibitors of signal transduction pathways, NIH3T3 cells (6.5 × 10⁵) were plated on a 10-cm-diameter dish, transfected with a mixture of 8 µg reporter plasmid, 8 µg expression plasmid and 4 µg pRSV-βgal, incubated for 16 to 20 h in fresh medium containing 10% calf serum, trypsinized and transferred to 12 or 24-well culture plates. After 3 to 5 h incubation in fresh medium containing 10% calf serum, a stimulant [TPA (100 ng/ml), or a combination of forskolin and IBMX (20 and 500 µM, respectively)] or blank was added, followed by incubation for 24 h. The inhibitors to be studied were added 1 h before the addition of stimulant.

Quantitation of CAT Protein

Cells were lysed by repeated freezing/thawing or using a lysis buffer (MOPS, 20 mM; NaCl, 10 mM; MgCl₂, 1.5 mM; Triton X-100, 1%). The CAT protein content of the cell lysates was assayed using an enzyme-linked immunoabsorbent assay (ELISA) with a CAT assay kit (Boehringer Mannheim Biochemica) and quantified using a standard curve constructed during each experiment with purified CAT supplied with the kit.

β-Galactosidase activity was measured as described previously. The protein content of the cell extracts was determined using the method of Bradford.

RESULTS AND DISCUSSION

As shown in Fig. 1, each reporter construct contained four repeats of each of the synthetic elements, RRE, CRE, and TRE. These multimerized response elements were inserted upstream of the minimal promoter of mouse major β-globin gene containing CAAT and TATA boxes. A gene encoding CAT reporter gene, followed by an SV40 t intron and a poly(A) addition signal, was placed downstream from these sequences.

Owen et al. have shown that the expression of ras oncogene induces an increase in the expression of the NVL-3 gene and that an RRE is involved in this ras responsiveness. To test the ability of our multimerized RRE construct to confer ras responsiveness, we transfected the recombinant reporter plasmid pGC3-4RE into NIH3T3 cells and v-Ha-ras-transformed NIH3T3 cells. Transfection of pGC3-4RE into Ha-ras-NIH3T3 cells resulted in a 5-fold increase in CAT compared with NIH3T3 cells (Fig. 2). The control vector pGC3, however, did not
induce CAT gene expression inHa-ras-NIH3T3 cells. These results confirmed that the RRE is capable of conferring a ras-enhanced increase in the expression of the CAT gene.

To further confirm the ras-responsiveness and specificity of RRE, we next transfected four reporter plasmids, pgC3, pgC3-4RRE, pgC3-4CRE, and pgC3-4TRE individually into NIH3T3 cells in combination with pH1, a v-Ha-ras expression plasmid which showed transforming activity after transfection of NIH3T3 cells, or with a control vector (pRSV-SEAP) lacking the v-Ha-ras sequence. Co-transfection of NIH3T3 cells with the v-Ha-ras expression vector pH1 in combination with pgC3-4RRE resulted in more than a 30-fold increase in CAT compared with basal (control) CAT (Fig. 3). Co-transfection of pH1 with pgC3-4TRE resulted in a moderate increase in CAT, but co-transfection with pgC3-4CRE or pgC3 did not increase CAT, as shown in the figure. The results suggest that v-Ha-ras activates the target gene expression via RRE- and TRE-transcriptional control elements in the transient expression assay systems.

We next tested whether TPA (a PKC activator) or a combination of forskolin and IBMX (abbreviated to F/I), an activator of adenylate cyclase and an inhibitor of phosphodiesterase, respectively, would induce the expression of CAT reporter gene downstream of RRE, CRE, or TRE. NIH3T3 cells were transiently transfected with each plasmid and treated with the inducers for 24 h. As expected, CAT was induced approximately 14-fold by F/I from CRE, and 7-fold by TPA from TRE (Fig. 4). In contrast, it was not induced by either F/I or TPA from RRE. It seems, therefore, that RRE, CRE, and TRE can be used as selective transcriptional enhancer elements for ras, protein kinase A (PKA), and protein kinase C (PKC) signal transduction pathways, respectively.

We then tested four well-characterized inhibitors of the individual signal transduction pathways for their possible effects. Lovastatin, an inhibitor of hydroxymethylglutaryl coenzyme A reductase, blocks processing of the ras precursor protein to its mature form and inhibits mammalian cell growth in vitro. H-89, an isoquinoline sulfonamide, was recently synthesized as a specific inhibitor of PKA and its selectivity has been confirmed. H-7 is an inhibitor of both PKC and PKA. Chelerythrine is reported to selectively inhibit PKC. These inhibitors were expected to interfere with one or more of the signal transduction pathways described above.

As summarized in Table I, lovastatin selectively inhibited the expression of ras-induced transcription of RRE- and TRE-CAT but inhibited neither the F/I-stimulated expression of CRE-CAT nor the TPA-stimulated expression of TRE-CAT. H-89 inhibited only the expression of CRE-CAT, without affecting other combinations of transcriptional activation. H-7 strongly inhibited the expression of TPA-induced TRE-CAT and, to a lesser extent, F/I-induced expression of CRE-CAT. Chelerythrine inhibited both the TPA- and ras-induced expression of CRE-CAT but not F/I-induced CRE-CAT or ras-induced RRE-CAT. CRE thus appears to be
activated only via the PKA signaling pathway while TRE is activated by signals involving PKC and ras, but not PKA, which is consistent with previous studies. These results suggest that the three reporter plasmids we constructed provide a reliable assay system for evaluating or identifying inhibitors of specific signal transduction pathways involving either ras, PKA or PKC in NIH3T3 cells.

We found recently that anthracycline antitumor antibiotics could be grouped into two types, one (doxorubicin and pirarubicin, etc.) capable of reversing transformed cell phenotypes of ras oncogene-expressed cells, and the other (aclarubicin, for example) which does not. We therefore examined the capacity of these anthracyclines to inhibit the Ras-stimulated signal transduction in the system described above. Pirarubicin, at concentrations effective in reversing transformed phenotypes of ras-transformed cells, significantly inhibited ras-induced expression of RRE-CAT as shown in Fig. 5. In contrast, aclarubicin which is unable to reverse ras transformed cells, stimulated RRE-CAT expression. The two antitumor drugs, however, enhanced F/I-induced expression of CRE-CAT, while showing almost no effect on TPA-induced expression of TRE-CAT. Similar results were obtained in the absence of inducers for CRE and TRE (data not shown). The selective inhibition by pirarubicin of ras induced transcription of RRE-CAT was reproducibly observed. Because the protein content of p21ras and its membrane association is not affected by the drug treatment (unpublished results), the target point appears to be a step downstream of the signaling pathway from activated Ras. Thus, the target site of pirarubicin is located somewhere on the signal transduction pathway downstream from activated Ras.

Ras proteins have been implicated as transducers of PKC-dependent and PKC-independent intracellular signals. Our results suggest that the Ras signal transduction for RRE is distinct from the TPA/PKC pathway, because TPA or inhibitors of PKC neither stimulate nor inhibit RRE-CAT transcription, confirming a previous suggestion. Pirarubicin, therefore, may act on an unidentified component distinct from the pathway involving PKC. RRE has recently been shown to contain two partially overlapping binding sites, one for AP-1 related nuclear factor, probably c-jun, and the other for transcription factors of the ets-family. To further define the target of pirarubicin, an investigation of the binding ability of these transcription factors to RRE might provide useful information.

Stimulation of transcription of CRE by pirarubicin, and RRE and CRE by aclarubicin was unexpected. However, this observation is very interesting because it has been reported that the typical anthracycline antibiotic, adriamycin, stimulates proliferation of human and murine cells at subtoxic concentrations. The biochemical mechanism, however, remains unexplained. It is possible that the enhanced transcription we observed may contribute to the stimulation of the growth of some cells.

In this study we conducted a transient transfection assay using CAT as a reporter gene. To characterize known compounds, and to screen new agents that affect specific signal transduction pathways, it is desirable to establish and use permanent cell lines containing individual DNA response elements linked to a common reporter gene. We are currently isolating such cell lines.

Acknowledgements We are grateful to Drs. T. Takeuchi and T. Kobayashi for the generous gifts of pirarubicin, aclarubicin, and lovastatin, respectively. We also thank
Drs. H. Fukazawa, S. Yamagoe and J. Ishikawa for critical comments, discussions and suggestions. This work was supported by Grants-in-Aid for Special Project Research on Cancer Bio-Science from the Ministry of Education, Science and Culture and for Cancer Research from the Ministry of Health and Welfare of Japan, by the Social Insurance Agency Contract Fund of the Japan Health Sciences Foundation, and by a Sasakawa Scientific Research Grant from the Japan Science Society.

REFERENCES