Lack of Potentiation with Felbinac Patch on the Convulsive Toxicity of Enoxacin in Rats

Hisakazu Ohtani,* Sonoe Noma, Junichi Kawakami, Yasufumi Sawada,1) and Tatsuji Iga

Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 3–1 Hongo 7-chōme, Bunkyo-ku, Tokyo 113, Japan. Received January 25, 1996; accepted March 21, 1996

We investigated the possible potentiation of the convulsive toxicity of enoxacin (ENX) by the concomitant topical application of a felbinac (FLB) patch in rats. A felbinac patch (Seltoch®; 0.5%, 3 cm × 4 cm) was attached on the back of rats where their hair had been removed. ENX was infused from the left jugular vein at 8 h after the application of FLB patch under an unanesthetized and unstrained condition. Blood, CSF and brain samples were collected at the occurrence of convulsion, and ENX concentrations of each part were determined.

As a result, no significant potentiation by FLB patch was found in the onset time of convulsion or in the ENX concentration of each part. Moreover, based on the assumption that there are no inter-species differences in ENX concentration in the brain at the occurrence of a convulsion (C₄₃), the predicted plasma ENX concentration required to elicit convulsions in humans, which was estimated from the C₄₃ and Kᵢ value of ENX in the brain of rats, was 20 times higher than the therapeutic plasma level.

Key words convulsion; enoxacin; felbinac; patch; NSAID; new quinolone

With a broad antimicrobial spectrum and high distributivity to organs, new quinolone antimicrobial agents (NQs) are widely used against infectious disease.2,3) However, their clinical drawback is focused upon the occurrence of convulsions with concomitant systemic administration of non-steroidal anti-inflammatory drugs (NSAIDs), even a with normal dosage regimen.4) Among the NQs, most of which are not approved with the use of NSAIDs, enoxacin (ENX) possesses a high potency for the convulsion and is quite susceptible against potentiation with NSAIDs.5) In addition, felbinac (FLB) is known to be a strong potentiator among NSAIDs.5)

FLB is used against inflammation not only orally but also topically as patch, and the latter is recommended to use with antimicrobial agents against infectious inflammation.6) The interaction between the FLB patch and oral NQs was not noted, conceivably because of the low systemic distribution of topically applied FLB.7)

However, the possibility of an interaction between the NQs and the FLB patch was not thoroughly excluded because pharmacodynamic interactions between oral drugs and topically applied agents have been reported in some cases, such as between warfarin and methyl salicylate.8) Since FLB was detected, even with a low plasma concentration (600—1300 ng/ml), after the topical application of FLB patch in humans,7) the possibility of a convulsant interaction remains.

To quantitatively estimate the possible interaction of an ENX-induced convulsion with the concomitant use of the FLB patch, we investigated the convulsive toxicity of ENX in the presence or absence of the FLB patch in rats.

MATERIALS AND METHODS

Materials Male Wistar rats were purchased from Nihon Ikagaku Doubutu Co., Ltd. (Tokyo, Japan) and caged for 7 d. Animals weighing from 200 to 250 g were used for the experiments. FLB patch (Seltoch®; containing 0.5% FLB) and ENX were kind gifts from Nihon Lederle and Dainippon Pharm. Co., Ltd., respectively.

* To whom correspondence should be addressed.

All other agents were of analytical grade.

Animal Preparation Animals were anesthetized with pentobarbital sodium (50 mg/kg, i.p.), and the hair on the back was denuded with the use of electric clipper (THRIVE, model 900, Daito Electric Co., Ltd., Osaka, Japan) and hair-removing cream (Kanebo, Tokyo, Japan). Left jugular veins were cannulated with polyethylene cannulae (SP-31, Natsume, Tokyo, Japan), the other end of which was subcutaneously lead to the back of the neck. At 16 h after surgical operation, a FLB patch (3 cm × 4 cm) was attached onto the back. Then, the animals were restrained in Ballman cages for 8 h to allow the plasma FLB concentration to stabilize.

At 8 h after the application of the FLB patch, ENX was intravenously infused at a rate of 50 mg/kg/min using an infusion pump (Compact infusion pump, model 975, Harvard apparatus, U.S.A.) until the occurrence of clonic convulsion. At this infusion rate, no acute peripheral toxicity was observed. After anesthesia with diethyl ether, cerebrospinal fluid (CSF) was drawn by cisternal puncture. The blood sample was collected from the aorta descendens. The animal was sacrificed by decapitation and the whole brain was dissected.

Determination of ENX The analytical procedure of ENX was according to Nakamura et al.,9) with minor modification.

Determination of ENX in Plasma and CSF One hundred microliter of plasma or CSF was pipetted into a 10-ml glass tube, and 1.0 ml of 0.1 M phosphate buffer was added. The sample was spiked with an internal standard (I. S.), 1 µg of ciprofloxacin (CPFX) dissolved in methanol. The compounds were extracted with 5 ml of chloroform containing 1.0% of ethyl chloroformate by shaking with a reciprocal shaker for 10 min. Four milliliters of the organic phase was transferred into another tube and dried with a rotary evaporator at 40 °C. The residue was dissolved into 100 µl of the mobile phase, and 20 µl were injected onto HPLC.

Determination of ENX in Brain The brain samples were homogenized (1:4, w/v) into 0.1 M phosphate buffer

© 1996 Pharmaceutical Society of Japan
(pH 7.0). One milliliter of homogenate was then spiked with the internal standard solution, and the compounds were extracted with 5 ml of dichloromethane by shaking with a reciprocal shaker for 10 min. Four milliliters of organic phase was transferred into another tube and back-extracted with 4 ml of 1 M NaOH. The aqueous phase was submitted to the plasma extraction procedure.

Correlation of ENX Concentration in Brain

The corrected brain concentration (C_br) was calculated from the observed concentration (C_br,obs) with Eq. 1 to exclude the components contained in the blood capillary.

\[
C_{br} = \frac{C_{br,obs} - r \times R_b \times C_p}{1 - r}
\]

where \(R_b \), \(r \) and \(C_p \) are the blood-plasma ratio of ENX, the voluminal ratio of capillary in brain and plasma ENX concentration, respectively. \(R_b \) and \(r \) were assumed to be 1.2 and 0.015, respectively, derived from the preliminary experiment.10

Condition of HPLC

HPLC systems consisted of an LC-6A liquid chromatograph (Shimadzu, Kyoto) and an SPD-6A spectrophotometer (Shimadzu, Kyoto).

The separations were performed on a column (6 i.d. \times 250 mm) packed with Nucleosil 5C18 at 50 °C. The samples were eluted with methanol–5.0 mM sodium lauryl sulfate (3:2, v/v) adjusted to pH 2.5 with phosphoric acid at a rate of 1.2 ml/min. The detection wavelength was adjusted to 280 nm. The limit of the quantification was 0.05 μg/ml.

Analysis

The predicted \(C_p \), at which a convulsion may clinically occur in human, was calculated by dividing the \(C_{br} \) in rats by the \(K_p \) value (= \(C_{br}/C_p \); 0.3) reported in human,11 based on the assumption that there are no significant inter-species difference in \(C_{br} \), which would elicit a clonic convulsion.

RESULTS

Table 1 shows the pharmacodynamic parameters; i.e., onset time for convulsion (\(t_o \)) and the ENX concentration at the occurrence of convulsion in plasma (\(C_p \)), CSF (\(C_{csf} \)) and brain (\(C_{br} \)).

No significant difference between the FLB patch group and the control group were shown in these parameters.

Figure 1 shows the predicted plasma concentration which may elicit a convulsion in human in the presence or absence of concomitant application of the FLB patch.

DISCUSSION

Although no one has referred to the interaction between NQS and topically applied NSAIDs, it is noteworthy to evaluate the risk of such interaction because these drugs are frequently used together, and the outcome of the interaction may be serious.

We focused upon the interaction between ENX and FLB, with which the interaction may occur when orally administered,4 and of which the electrophysiological interaction was scrutinized in vitro.12

We employed pharmacokinetic and pharmacodynamic data such as \(C_p \), \(C_{csf} \), \(C_{br} \) and \(t_o \) of ENX, at the event of convulsion, as the indices of convulsive toxicity. The \(t_o \) is parallel to the total dose of ENX required to elicit a convulsion, because ENX was infused at a constant rate. However, \(C_{csf} \) and \(C_{br} \) may be more appropriate indices than the others, since this interaction occurs in the central nervous system (CNS).

In any case, the FLB patch did not affect any parameters in our present study.

The plasma FLB concentration in rats at 8 h after the application of FLB patch (3 \times 4 cm) was reported to be 0.8 μg/ml,13 which agreed well with a result of our preliminary experiment (1.08 μg/ml). This is substantially equivalent to the clinical concentration, 0.83 μg/ml, which appears after a single dosage regimen (10 \times 14 cm) of FLB patch in humans.7 Thus the FLB concentration, at least in plasma, in our present study may reflect the clinical condition where the FLB patch is used.

We assumed that \(C_{br} \) in humans at the occurrence of convulsion is identical to that in rats in our present analysis. The potentiation of the convulsing toxicity of NQS is the result of the potentiation of inhibitory effects of NQS on GABA (γ-amino butyric acid)-Cl- current.12

It is reported that there are no significant inter-species differences in the inhibitory effects and the potentiation rate among mouse, rat, rabbit, dog and monkey.14 This
may confirm the above mentioned assumption.

A normal dosage of FLB patch did not seem to poten-
tiate the convulsive toxicity of ENX in our present study. Moreover, as shown in Fig. 1, the estimated plasma concentration of ENX to induce the convulsion in human is 20 times or more higher than the clinical range, even in the case of the concomitant use of the FLB patch. Thus, there may be little possibility of the potentiation of ENX-induced convulsion by the FLB patch. However, these results did not exclude the risk of the concomitant use of the FLB patch under hazardous conditions such as overdose, hepatic or renal dysfunction, change in the blood–brain-barrier permeability or change in the response of CNS against ENX. Moreover, overdose of the FLB patch or the application of the FLB patch on damaged skin may also result in an increase in plasma FLB concentration and be hazardous.

In conclusion, a normal dosage of FLB patch does not potentiate the convulsive toxicity of ENX.

REFERENCES AND NOTE

1) Present address: Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Fukuoka 812, Japan.

728 (1993).