Preference of Peyer's Patches to Jejunal Epithelium for Intestinal Absorption of Oligopeptides, Tyrosylglycylglycine and d-Kyotorphin

Shingo HASETO, Takashi MIZUMA, Hiroyuki OUCHI, Tomonori ISODA, Masahito HAYASHI, and Shoji AWAZU*

Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan. Received March 6, 1997; accepted June 30, 1997

The intestinal absorption of oligopeptides, peptidase-degradable tyrosylglycylglycine (TGG) and peptidase-resistant l-tyrosyl-d-arginine (d-kyotorphin, d-KTP) across Peyer's patches (PP) in rabbit intestine were studied using an Ussing-type chamber and in situ closed perfusion methods. The clearance for the serosal appearance of intact TGG across PP by the Ussing-type chamber method was a little higher than that across the jejunal epithelium (JE). Meanwhile, in the in situ closed perfusion experiment showed that the clearance for the plasma appearance of intact TGG across PP was about 10 times that of JE. Furthermore, it was shown that the clearance for the plasma appearance of d-KTP in PP was about twice that in JE by the in situ closed perfusion method, indicating that the membrane permeability of PP was higher than that of JE. Therefore, these results indicate that PP had less metabolic peptidase activity than JE, and that the PP was a suitable site for the intestinal absorption of oligopeptides, especially peptidase-degradable peptides.

Key words: Peyer's patches; d-kyotorphin; tyrosylglycylglycine; intestinal absorption; intestinal metabolism

It is well known that the intestinal absorption of both peptides and proteins is poor. Our previous study reported that rabbit Peyer's patches (PP) transported high molecular peptides more effectively, with less hydrolysis than the jejunal epithelium (JE). In this report, the transport of oligopeptides, tyrosylglycylglycine (TGG, a part of leucine enkephalin) and l-tyrosyl-d-arginine (d-kyotorphin, d-KTP) across PP was studied using two experimental methods which measured metabolic activity and membrane permeability. In rat intestine, aminopeptidase-degradable TGG was too unstable to be transported, whereas peptidase-resistant d-KTP, which was reported to be stable in the brain, was stable enough to be transported in the small intestine.

MATERIALS AND METHODS

TGG and d-KTP were purchased from Sigma Chemical Co. (St. Louis, U.S.A.). Other reagents were of analytical grade.

Transport Experiment Using Ussing-Type Chamber JE and proximal PP were removed from male New Zealand white rabbits (2-3 kg) which had been fasted for about 24 h. The tissues were isolated from rabbit intestine under anesthesia induced by the intraperitoneal administration of urethane (dose of 3.3 g/rabbit). After the muscular layer was stripped from intestinal tissue, the intestinal tissue were mounted on the Ussing-type chambers using the same method described in our previous report. Eleven milliliters of Ringer solution containing TGG (10 mM) was added to the mucosal side, and 11 ml of Ringer solution was added to the serosal side. Transport experiments were performed at 37°C. One milliliter of Ringer solution on the serosal side was sampled every 20 min, then an additional 1 ml of Ringer solution was supplemented to maintain a constant serosal volume.

Transport Experiment by in Situ Closed Loop Perfusion The in situ closed loop perfusion experiment followed the method of Ho et al. A glass perfusion cell was inserted into the small intestine to face the PP or JE (0.4 cm²). After perfusion of Ringer's buffer for 10 min, 10 ml of peptide solution (10 mM) dissolved in Ringer's buffer was perfused at a flow rate of 5 ml/min. Blood from the intestinal vein was sampled every 10 min by a peristaltic pump at a flow rate of 0.08 ml/min.

Assay of TGG and d-KTP TGG, d-KTP and tyrosine were determined by HPLC, as reported previously. Briefly, a column (Finepak SIL C18-5, Jasco, Tokyo) and fluorescence detector (S21-FP, Jasco, Tokyo, Ex. 278 nm, Em. 305 nm) were used. The flow rate of the mobile phase composed of 4% acetonitrile in 10 mM ammonium formate (pH 4.5) was 1.0 ml/min.

Data Analysis Clearance for the serosal or plasma appearance (CLapp) of TGG and d-KTP and its 95% confidence interval (95% CI) were calculated from the amounts transported during the period from 20 to 60 min.

RESULTS AND DISCUSSION

Figure 1 shows the time course of the serosal appearance of intact TGG in the Ussing chamber experiment. This indicates that the transported amount of intact TGG across PP was a little larger than that of JE (Fig. 1). CLapp in PP and JE were 1.61 x 10⁻³ and 0.939 x 10⁻³ µl/min/cm², respectively (Table 1).

Figure 2 shows the time course of the appearance of intact TGG in plasma in the in situ closed perfusion experiment. CLapp of TGG in PP and JE were 15.9 x 10⁻³ and 1.26 x 10⁻³ µl/min/cm², respectively (Table 1). This indicates that the absorption of TGG across PP was definitely higher than that across JE. CLapp of TGG in JE was similar to that in the Ussing chamber experiment. Since TGG was reported to be metabolized by an aminopeptidase, bestatin-inhibitable peptidase, the preference of CLapp in PP to JE was considered to be derived from the lower activity of aminopeptidase in PP than JE. This is supported by the report of Hayakawa and Lee. These results indicate that PP is a suitable site for the intestinal absorption of oligopeptides, especially peptidase-degradable peptides.

© 1997 Pharmaceutical Society of Japan
for intestinal absorption of not only high molecular peptides but also peptidase-degradable oligopeptides.2) Figure 3 shows the time course of appearance of d-KTP in plasma across PP and JE in the in situ closed perfusion experiment. CLopr in PP and JE were 0.338 and 0.0944 μl/min/cm², respectively (Table 1). This indicates that d-KTP was transported across PP to a greater extent than across JE. Meanwhile, in rat everted small intestine (jejunum), the absorption clearance of d-KTP was 0.465 μl/min/cm² (calculated from 0.516 μl/min per cm of intestine61 by assuming that the lumenal radius is 0.178 cm9), which was about one-tenth that of d-glucose (20 mm).101 Since d-KTP was stable against peptidase,2) the transportability of d-KTP, which does not contain a metabolic factor, represents the permeability preference of PP to JE.

The preference of TGG and d-KTP transport across PP in comparison to JE was observed in the in situ closed perfusion experiment. However, this preference was not observed in the Ussing chamber experiment as shown for TGG in this study, and as reported for d-KTP previously.2) The Ussing-type chamber experiment in this study is devoid of blood flow or the muscular layer barrier, and thereby, the transport process to the serosal side was simple. Meanwhile, the in situ closed perfusion experiment preserved the blood flow, which is a primary factor for maintaining physiological conditions; in addition, the same transport pathway of drug from the luminal side into the intestinal vein as in vivo was observed. Furthermore, the CLopr of TGG in JE in the Ussing chamber experiment was similar to that of the in situ closed perfusion experiment, indicating that the two experiments worked well and the results of PP absorption were not artificial. For the PP absorption study, therefore, the in situ closed perfusion experiment was considered to be more suitable than the Ussing-type chamber experiment. It also seems that the more complicated transport process in the in situ closed perfusion experiment than in the Ussing chamber experiment resulted in variance of transported amounts in PP.

In conclusion, the absorption preference of PP to JE was shown in the in situ experiment for both TGG (about 10 times) and d-KTP (about twice), but in practice the area of PP is much smaller than that of JE in the intestine. Therefore, an efficient delivery to PP is necessary to actually improve the intestinal absorption of peptides through PP.

Acknowledgments The authors thank Dr. N. F. H. Ho for helpful advice about the in situ closed perfusion experiment technique, and Ms. Kaoru Marui and Mr. Masashi Otaki for technical assistance.

REFERENCES AND NOTES

1) Present address: Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12 Ichigaya Funagawaro-Machi, Shinjuku-ku, Tokyo 162, Japan.