Uptake of Enalapril by Rabbit Small Intestinal Brush-Border Membrane Vesicles

Shuji Kitagawa,* Junko Takeda, and Shinji Sato
Niigata College of Pharmacy, Kamishin'ei-cho 5–13–2, Niigata 950–2081, Japan.
Received February 24, 1999; accepted April 16, 1999

Uptake of the angiotensin-converting enzyme (ACE) inhibitor enalapril by rabbit small intestinal brush border membrane vesicles was examined. In the presence of an inward H⁺ gradient the uptake of this peptide mimetic drug was accelerated and an overshoot phenomenon was observed. The uptake was more stimulated by higher H⁺ gradient. Initial uptake rate was saturable in the presence of an inward H⁺ gradient, with apparent Kᵅ value of 4.2 ms⁻¹. These findings suggest the involvement of the H⁺-coupled carrier-mediated transport in the uptake of enalapril. The uptake was inhibited by ACE inhibitor trandolapril but hardly or only slightly inhibited by aminoclofenosporins.

Key words: ACE inhibitor; enalapril; small intestine; brush-border membrane vesicle; intestinal absorption

H⁺-coupled oligopeptide carrier plays an important role in the oral absorption of peptide-like drugs such as the β-lactam antibiotics cephradine and cefixime.7-30 cDNA encoding peptide transporter (PepT1) has been cloned for human and rabbit,3,5 and its involvement in the transport of the oral β-lactam antibiotics has been identified.6,7 Like β-lactam antibiotics, angiotensin-converting enzyme (ACE) inhibitors such as enalapril maleate (hereafter referred to as enalapril), which are also peptide-mimetic drugs, have been suggested to be transported at least partly by the H⁺/oligopeptide carrier following experimental findings using perfusion.8,9 Ussing chamber,10 and everted intestinal rings.11 The concentration dependent permeability and the decrease by a dipeptide and cephradine in a perfusion experiment has been reported.9 A non-linear relationship between concentration and the transport was also observed by a Ussing chamber experiment.10 Furthermore, H⁺-linked transport has been suggested in Caco-2 cells with observation of lowered intracellular pH when perfused across the apical surface of cell monolayers.12

We recently reported the inhibition by ACE inhibitors enalapril, quinapril, benazepril, temocapril and trandolapril on the uptake of an aminoclofenosporin antibiotic, cefroxadin, by rabbit small intestinal brush-border membrane vesicles, and confirmed the affinity of these drugs to the H⁺/oligopeptide transporter.13,14 Among these ACE inhibitors, enalapril is a relatively hydrophilic drug which is not likely to be beneficially absorbed through the lipid bilayer of intestinal epithelial membrane. Therefore, transport by carrier protein is probably involved in its absorption process. However, the transport of enalapril by a non-saturable, passive diffusion process has also been suggested by studies using everted rat intestinal rings and Caco-2 cells.15

Therefore, to examine the involvement of the H⁺/oligopeptide carrier in the uptake process of enalapril, we investigated the characteristics of the uptake using brush-border membrane vesicles, a method appropriate to determine the transport mechanism of relatively hydrophilic drugs such as enalapril. We used rabbit vesicles because the major contribution of the dipeptide transporter to the uptake of aminoclofenosporins has been reported in rabbit,13 and because we have identified the nearly competitive inhibitory effect of enalapril on the uptake of the aminoclofenosporin antibotic, cefroxadine by rabbit vesicles.13,14

MATERIALS AND METHODS

Materials: Enalapril maleate, cephradine and cephalexin were obtained from Sigma (St. Louis, MO, U.S.A.). Trandolapril (Hoechst Marion Roussel, Cedex, France) was generously donated. All other reagents were purchased from Wako Pure Chemical Industries (Osaka, Japan).

Preparation of Brush-Border Membrane Vesicle: Brush-border membrane vesicles were isolated from rabbit small intestine as described previously13,14 by the CaCl₂ precipitation method of Kessler et al.15 and suspended in medium A (10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-KOH (pH 7.5)), 100 mM KCl and 100 mMmannitol).

Measurement of Enalapril Uptake: Enalapril uptake was measured by the rapid filtration technique of Okano et al.16 Membrane vesicles (10 μl) were incubated at 37°C with a nine-fold volume of medium B (100 mM KCl and 100 mMmannitol buffered with either 10 mM MES (2-(N-morpholino)ethanesulfonic acid)-KOH (pH 5.5—6.0) or 10 mMHEPES-KOH (pH 6.5—7.5)). From aliquots of the samples drawn, enalapril trapped on a nitrocellulose membrane filter was extracted with 300 μl of distilled water and was used for determination by HPLC. Non-specific absorption of enalapril to the membrane vesicles was estimated by incubating the vesicles with an ice-cold substrate mixture. Deviation of data at each extravesicular pH was within 21%.

Analytical Method: The amount of enalapril absorbed by the brush-border membrane vesicles was determined by HPLC (L-6000, Hitachi, Ltd., Tokyo) using an L-4000 UV detector (Hitachi, Ltd.) after solid phase extraction of enalapril following Hammes et al.17 with some modification. Separation was achieved on a reversed phase column (Mightysil, RP-18, 4.6 mm i.d., 250 mm) using a mobile phase consisting of methanol, water and phosphoric acid (50 : 50 : 0.05, v/v) at a flow rate of 1.0 ml/min. Absorbance was detected at 220 nm using temocapril as an internal standard. Protein was measured by the method of Lowry et al.18 with bovine albumin as the standard.

© 1999 Pharmaceutical Society of Japan

* To whom correspondence should be addressed.
RESULTS AND DISCUSSION

We examined the enalapril uptake by rabbit small intestinal brush-border membrane vesicles in the presence or absence of an inward H⁺ gradient. As shown in Fig. 1, in the presence of the gradient, the uptake occurred quickly, reached the maximum level in 1 min, and a slight overshoot phenomenon was observed. In contrast, permeation occurred slowly in the absence of H⁺ gradient and reached the equilibrium concentration in 5 min. These findings are consistent with those on aminopenicillins such as cephradine and diaminic cephalosporins such as cefixime. The uptake was accelerated by higher pH gradient as shown in Fig. 2.

We next examined the concentration-dependence of the initial uptake rate of enalapril in the presence of an inward H⁺ gradient. As shown in Fig. 3, the uptake rate was saturable. The concentration dependence of enalapril uptake rate was analyzed by assuming that the transport process consists of a carrier mediated process and simple diffusion using nonlinear least-squares regression analysis. Kinetic parameters were calculated from the following equation:

\[V = \frac{V_{\text{max}} [S]}{K_m + [S]} + K_d [S] \quad (1) \]

where \(V \) is the initial uptake rate, \([S] \) is the extravesicular concentration, \(V_{\text{max}} \) is the maximum uptake rate by carrier-mediated process, \(K_m \) is the Michaelis constant, and \(K_d \) is the coefficient of simple diffusion. According to the analysis, \(K_m \) and \(V_{\text{max}} \) were 4.16 mm and 6.22 nmol/mg protein/30 s, respectively. \(K_d \) was 1.01 µl/mg protein/30 s. The Michaelis constant resembles those of aminopenicillins. Furthermore, it was similar to the inhibition constant, \(K_i \), on cefuroxime uptake by rabbit small intestinal brush-border membrane vesicles (4.2 ± 1.6 mm), suggesting the possibility...
that enalapril is carried by the transporter which carries cefoxadine.

We also examined the effects of two aminoccephalosporins (cephadrine and cephalaxin) and the ACE inhibitor trandolapril on the uptake of enalapril. As shown in Fig. 4, the uptake was inhibited by trandolapril. However, 20-fold concentration (10 mM) of cephalaxin only slightly inhibited the uptake and that of cephradine had no effect. This is in contrast to the previous findings that uptake of cephapirin such as cefoxadine was markedly inhibited by high concentrations of cephradine and cephalaxin.21

These findings suggest that H⁺-coupled transport at least partly contributes to the uptake of enalapril in small intestinal brush-border membrane. However, the involvement of the H⁺/oligopeptide transporter is still not clear because of no or only slight inhibition by aminoccephalosporins. The kinetic analysis revealed above suggested that passive diffusion is also important for the uptake of enalapril in spite of its relatively hydrophilic nature. Furthermore, the possible involvement of some other transporter than H⁺/oligopeptide transporter in the uptake process of enalapril cannot be excluded.

Acknowledgment This work was supported in part by a grant from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

REFERENCES