Evaluation of Analgesic and Anti-inflammatory Activity of Novel β-Lactam Monocyclic Compounds

Carmela Saturnino, Bruno Fusco, Paola Saturnino, Giovanni De Martin, Flavio Rocco, and Jean-Charles Lancelot

Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy, and Centre d’Etudes et de Recherche sur le Médicament de Normandie, UFR des Sciences Pharmaceutiques, 1 rue Vaubernard, 14032 Caen Cedex, France. Received April 16, 1999; accepted December 24, 1999

We have examined the in vivo anti-inflammatory and analgesic activity of a new series of monocyclic β-lactams (azetidinones), similar to others which have been demonstrated to be inhibitors of human leukocyte elastase (HLE), an enzyme involved in degradation processes of connective tissues. Our new compounds have been administered orally (15 mg/kg) to albino rats 30 min before injecting carrageenin in the plantar aponeurosis. Tested compounds have demonstrated a certain activity and stability to gastric hydrolysis, in particular two of them markedly reduced paw edema formation, even if slightly less effectively than indomethacin (reference compound, 5 mg/kg). To evaluate the analgesic activity we carried out the acetic acid writhing test, pretreating rats orally with our compounds 30 min before injecting the acid solution i.p. The same two molecules which showed the anti-inflammatory activity demonstrated a very light analgesic activity. These results suggest the possibility of carrying out further studies, particularly in vitro, on the mechanism of action of our compounds, mechanism which could be the HLE inhibition.

Key words inflammation; monocyclic β-lactam; human leukocyte elastase

The last ten years has seen the fruition of using β-lactam compounds to inhibit some enzymes belonging to the family of serine proteinases, in particular human leukocyte elastase (HLE, EC 3.4.21.37). This is an enzyme stored in the azurophilic granules of polymorphonuclear leukocytes that increases blood vessel permeability hydrolyzing basement membrane elastine and that intervenes in the degradation processes of connective tissue, processes that underlie diseases such as emphysema, chronic bronchitis, cystic fibrosis and acute respiratory distress syndrome. Agents able to inhibit this enzyme could thus be of use in treating these inflammatory diseases. The first researchers studying β-lactam HLE inhibitors were Merck ones, some of the potent resulting compounds belong to the class of 1a structure (Fig. 1). The same research team has synthesized azetidinones, as 1b structure, which seem to inhibit HLE by simple formation of a stable acyl-enzyme (due to the attack of Ser-195 in the active site on the lactam carbonyl) which does not undergo hydrolysis. A further important monocyclic β-lactam inhibitor, which lacks the C-4 side chain, was obtained from Rebourg-Ravaux and co-workers and is compound 1c.

Taking these results into account, we decided to design a new type 1d structural model; it is an azetidinone with some replaced aromatic substituents. We assumed that the characteristics of type 1d model should have made it able to act as an orally active anti-inflammatory drug and in particular as a serine proteinase inhibitor. We obtained it through cyclization of appropriate N-arylpiperonamides, which gave the N-aryl-1,3-dimethylazetidin-2-ones 2a—f reported in Fig. 2.

Preliminary in vivo tests were done to evaluate any anti-inflammatory activity (carrageenin-induced edema test) and analgesic activity was also evaluated (writhing test)

MATERIALS AND METHODS

a) Anti-edemogenic activity was evaluated through the carrageenin test of Winter et al. The effects of pretreating rats with products 2a—f (30 min previously), administered orally via gastric intubation (15 mg/kg), were studied on localized edematous reaction; 0.1 ml of 1% suspension of carrageenin in distilled water was injected subcutaneously (s.c.) into the plantar sub-aponeurosis. The paw volume was measured by a mercury plethysmograph (differential gauge, manufactured by Basile) at the moment of carrageenin injection and then 1, 2, 3 and 4 h later (always taking care to immerse the paw at the same level, that is the tibia-astragalic joint, ascertained and marked with a line before the test).

Indomethacin (5 mg/kg per os) was used as reference compound. Albino rats (180—200 g) of both sexes were used, excepting pregnant females; each group comprised six animals. The mean increase of paw volume, at the above-said time intervals, of the control group (receiving carrageenin alone) and drug-treated groups was calculated. The most significant results are given in Table 1. MANOVA test was used in the statistical evaluation.

Fig. 1

© 2000 Pharmaceutical Society of Japan
b) Analgesic activity was evaluated through the acetic acid test (writhing test) as described by Davies et al.14,15 The activity of 2a–f was evaluated in rats, administering the compounds (15 mg/kg) orally by gastric intubation 30 min before acetic acid (0.25 ml intra peritoneum (i.p.), per rat, of a 0.5% aqueous solution). For each animal, the number of writhing movements was measured, in the 25 min immediately after administration of acetic acid. The mean number of writhes for each group of animals and the percentage variation compared with the control group were calculated. Mice (Mus musculus) of both sexes were used, excepting pregnant females, weighing 20–25 g; each group comprised six animals. The most significant results are given in Table 2. Wilcoxon test was used for the statistical evaluation.

RESULTS AND DISCUSSION

All tested compounds showed a certain activity; in particular we give in Table 1 the results of 2a and 2f, which showed a marked anti-inflammatory activity on rats at a dose of 15 mg/kg, which was above that of indomethacin, used as reference drug in these tests.

The second test demonstrated that these monocyclic β-lactams have an analgesic activity inferior to the anti-inflammatory one, since response to 2a was modest and response to 2f was not really significant.

It is noteworthy that 2a and 2f retained their activity after oral administration, showing they did not undergo hydrolysis in the gastro-intestinal tract or in the blood stream, a problem common to β-lactam structures and to many in vitro HLE inhibitors.

Even if we cannot state that these new azetidinones are HLE inhibitors we can draw some preliminary conclusions: in vitro tests are now necessary in order to verify with certainty if the anti-inflammatory activity of these compounds is due to a mechanism of inhibition of HLE, as could be hypothesised. If true, this result should give some useful suggestions for the design strategy of HLE monocyclic β-lactam inhibitors. If not true, it would be interesting to further investigate the mechanism of action of these new azetidinones.

Acknowledgements Dr. Armando Vellano is gratefully

Table 2. Evaluation of the Analgesic Activity of Indomethacin and of 2a and 2f by the Acetic Acid Test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Mean writhing movements ± E.S. in 25 min</th>
<th>Percentage variation over control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>44.72 ± 4.35</td>
<td>-46.0</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>5</td>
<td>24.13 ± 5.62a</td>
<td>-27.4</td>
</tr>
<tr>
<td>2a</td>
<td>15</td>
<td>32.45 ± 6.73a</td>
<td>-21.0</td>
</tr>
<tr>
<td>2f</td>
<td>15</td>
<td>35.34 ± 6.21a</td>
<td></td>
</tr>
</tbody>
</table>

a p<0.01 vs. control value (Wilcoxon test). b) p<0.05 vs. control value.

Table 1. Evaluation of the Anti-inflammatory Activity of Indomethacin and of 2a and 2f by the Carrageenin Paw Edema Test

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>0</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.55 ± 0.12</td>
<td>2.36 ± 0.21 (+52)</td>
<td>2.63 ± 0.16 (+69)</td>
<td>2.75 ± 0.19 (+77)</td>
<td>2.88 ± 0.18 (+86)</td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td>1.59 ± 0.1</td>
<td>1.82 ± 0.20 (+47)</td>
<td>1.83 ± 0.17 (+53)</td>
<td>1.86 ± 0.22 (+62)</td>
<td>1.88 ± 0.19 (+71)</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>1.62 ± 0.11</td>
<td>2.10 ± 0.16 (+50)</td>
<td>2.12 ± 0.17 (+52)</td>
<td>2.22 ± 0.15 (+65)</td>
<td>2.27 ± 0.17 (+70)</td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td>1.73 ± 0.14</td>
<td>1.92 ± 0.18 (+55)</td>
<td>2.21 ± 0.15 (+60)</td>
<td>2.22 ± 0.19 (+65)</td>
<td>2.51 ± 0.17 (+75)</td>
<td></td>
</tr>
</tbody>
</table>

Paw volume was measured after carrageen administration, at the times (h) written at the top of the table. In brackets are the mean percentage increases in volume over time zero. a) p<0.01 vs. control value (ANOVA test). b) p<0.05 vs. control value.
acknowledged for reviewing this work. We thank the research team of Istituto di Farmacologia, II Facoltà di Medicina e Chirurgia, Università di Napoli, who carried out the pharmacological tests. This work was partially supported by grants from MURST, Italy.

REFERENCES