BPB Reports
Online ISSN : 2434-432X
Regular Article
Thiazolidinediones Downregulate PPARγ Expression via Induction of aP2 During Mouse 3T3-L1 Preadipocyte Differentiation
Atsuko MasumiYuko ObaMarina TonosakiIkumi AizuKrisana AsanoAkio Nakane
著者情報
ジャーナル オープンアクセス HTML
電子付録

2020 年 3 巻 4 号 p. 119-125

詳細
抄録

Thiazolidinediones, such as troglitazone and rosiglitazone, are anti-diabetic insulin-sensitizing agents that bind to the peroxisome proliferator-activated receptor γ (PPARγ) and have potent adipogenic effects on 3T3-L1 preadipocytes. During 3T3-L1 preadipocyte differentiation, which was induced by isobutyl methylxanthine, dexamethasone, and insulin, troglitazone treatment increased lipid content and decreased PPARγ protein levels compared with DMSO-treated control cells. However, the level of CCAAT/enhancer binding protein α (C/EBPα) and C/EBPβ proteins did not decrease in troglitazone-treated cells compared with DMSO-treated cells. Real-time PCR analysis showed that PPARγ mRNA but not C/EBPα mRNA was downregulated in troglitazone-treated adipocytes, suggesting that PPARγ protein reduction occurred due to the decrease in its transcription level. Rosiglitazone treatment also increased lipid content but decreased PPARγ expression during 3T3-L1 preadipocyte differentiation. Both thiazolidinediones significantly increased the levels of adipokines such as adipocyte protein 2 (aP2) and adiponectin in 3T3-L1 adipocytes compared with that in DMSO-treated cells. We propose that thiazolidinediones are involved in adipogenic homeostasis rather than act as agonists of PPARγ during 3T3-L1 adipocyte differentiation.

著者関連情報
© 2020 The Pharmaceutical Society of Japan

BPB Reports applies the Creative Commons Attribution (CCBY) license to works we published. The license was developed to facilitate open access - namely, free immediate access to, and unrestricted reuse of, original works to all types. Under this license, authors agree to make articles legally available for reuse, without permissions of fees, for virtually any purpose. Anyone may copy, distribute, or reuse these articles, as long as the author and original source are properly cited.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top