BPB Reports
Online ISSN : 2434-432X
Report
Chromium(VI) Adsorption from the Aqueous Phase by Activated Carbon
Fumihiko OgataHajime KimuraChalermpong SaenjumTakehiro NakamuraNaohito Kawasaki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 3 Issue 5 Pages 170-173

Details
Abstract

The performance of hexavalent chromium (Cr(VI)) adsorption by activated carbon (AC) prepared from coconut shell (AC1) and modified with silver nanoparticles (AC2), titanium oxide (AC3), and magnetic powder (AC4) was evaluated in this study. The interaction between AC surface properties and Cr(VI) was also assessed via elemental distribution and binding energy analyses. More Cr(VI) was adsorbed onto AC1 than onto any other AC, indicating that the specific surface area and surface functional groups are key factors for Cr(VI) adsorption from the aqueous phase (with correlation coefficients of 0.988 and 0.868–0.949, respectively). Activation of the coconut shell with silver nanoparticles, titanium oxide, and magnetic powder did not increase Cr(VI) adsorption. Cr atoms were detected on the AC1 surface by electron probe microanalysis only after adsorption. Moreover, the binding energies of Cr (2s, 2p, 3s, and 3p) and O (1s) were confirmed after absorption. These results indicate that AC surface properties were strongly related to adsorption performance. Finally, this study reveals the optimal pH conditions for the removal of Cr(VI) from the aqueous phase of approximately pH 2–3 (acidic conditions). In conclusion, this study elucidates the Cr(VI) adsorption mechanisms of coconut shell-derived AC.

Content from these authors
© 2020 The Pharmaceutical Society of Japan

BPB Reports applies the Creative Commons Attribution (CCBY) license to works we published. The license was developed to facilitate open access - namely, free immediate access to, and unrestricted reuse of, original works to all types. Under this license, authors agree to make articles legally available for reuse, without permissions of fees, for virtually any purpose. Anyone may copy, distribute, or reuse these articles, as long as the author and original source are properly cited.
https://creativecommons.org/licenses/by/4.0/
Previous article
feedback
Top