BPB Reports
Online ISSN : 2434-432X
Regular Article
Extracellular Adenosine Induces IL-6 Production through Activation of A2B Receptor and Epidermal Growth Factor Receptor in Human Keratinocyte HaCaT Cells
Ken WatanabeSei-ichi TanumaMitsutoshi Tsukimoto
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 4 Issue 2 Pages 64-68

Details
Abstract

Epidermal cells produce cytokines as a part of the body’s response to various external stimuli. Though extracellular ATP-induced activation of P2 receptors is involved in cytokine production in epidermal cells, it is not known whether activation of P1 receptors by extracellular adenosine leads to IL-6 production in epidermal cells. Here, we show that activation of adenosine A2B receptor induces IL-6 production via phosphorylation of epidermal growth factor receptor (EGFR) in human keratinocyte HaCaT cells. We found that treatment of HaCaT cells with 100 µM adenosine or with A2B receptor-specific agonist BAY60-6583 induced IL-6 production, and the production of IL-6 was suppressed by pretreatment with A2B receptor-specific antagonist PSB603. Adenosine-induced IL-6 production was also suppressed by A2B receptor knockdown. In addition, adenosine- and BAY60-6583-induced IL-6 production was suppressed by treatment with EGFR antagonist AG1478. Furthermore, adenosine and BAY60-6583 induced EGFR phosphorylation, and this phosphorylation was suppressed by A2B receptor knockdown. Thus, our data indicate that the A2B receptor-EGFR pathway has a role in IL-6 production. This in turn suggests that extracellular adenosine is involved in skin inflammation.

Content from these authors
© 2021 The Pharmaceutical Society of Japan

BPB Reports applies the Creative Commons Attribution (CCBY) license to works we published. The license was developed to facilitate open access - namely, free immediate access to, and unrestricted reuse of, original works to all types. Under this license, authors agree to make articles legally available for reuse, without permissions of fees, for virtually any purpose. Anyone may copy, distribute, or reuse these articles, as long as the author and original source are properly cited.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top