Real-time intraoperative near-infrared autofluorescence imaging to locate the parathyroid glands: A preliminary report

Bei Qian§, Ximeng Zhang§, Kaijian Bing, Longqing Hu, Xincai Qu, Tao Huang, Wei Shi*, Shoupeng Zhang*

Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

SUMMARY Identification and localization of parathyroid glands (PGs) remains a challenge for surgeons. The aim of this study was to evaluate the efficiency of intraoperative near-infrared autofluorescence (NIRAF) imaging to detect PGs in thyroid and parathyroid diseases. Seventy-six patients undergoing surgery for thyroid or parathyroid diseases between July 9, 2020 and August 20, 2021 were retrospectively analyzed. Intraoperative carbon nanoparticle (CN) negative imaging and handheld NIRAF imaging were successively performed for each patient. Of 206 PGs that needed to be identified for surgery, 162 were identified by NIRAF imaging, with a theoretical rate of identification of 78.64%. This was higher than the rate of identification with CN negative imaging, which was 75.73%. The number of PGs identified by NIRAF imaging and CN negative imaging did not differ significantly in either total thyroidectomy or thyroid lobectomy. In addition, the autofluorescence (AF) intensity of secondary parathyroid adenoma was weaker than that of normal PGs. NIRAF imaging is potentially a more efficient tool for identification of PGs than CN negative imaging, with a shorter learning curve and lower risk. It may not be well-suited to secondary hyperthyroidism or adenoma, but it was more efficient at identifying excised specimens than visual identification by a surgeon.

Keywords parathyroid glands (PGs), near-infrared autofluorescence (NIRAF) imaging, carbon nanoparticles (CNs), identification, localization.

1. Introduction

With the increasing incidence of thyroid cancer (THCA) worldwide, thyroidectomy has become one of the most common endocrine surgeries (1). However, hypoparathyroidism caused by surgical injury remains a challenge for surgeons. The reported incidence of permanent hypoparathyroidism after total thyroidectomy is 0.5-6.6% and that of temporary hypoparathyroidism after thyroid surgery is 6.9-46% (2,3). Moreover, the risk of iatrogenic injury and inadvertent removal of parathyroid glands (PGs) increases with the extent of dissection or the complexity of the surgery (4). Tufano et al. reported that the incidence of permanent hypoparathyroidism following reoperative central compartment neck dissection can reach 9.5% (5).

Currently, conventional measures to reduce the risk of postoperative hypoparathyroidism mainly rely on visual recognition by a surgeon and preservation of PGs and their vascular pedicles, which are highly dependent on the surgeon's experience (6). However, PGs are very small and similar in color to adipose or connective tissue and even lymph nodes (LNs), and they are usually embedded within the surrounding tissue or behind the thyroid gland, so even experienced surgeons can unintentionally remove them at a rate as high as 9.1-15% (1,7). For surgeons with less experience or beginners in thyroid surgery, the incidence will be higher. Intraoperative frozen biopsy is the "gold standard" to confirm that the specimen removed is indeed a PG, but it involves considerable time and cost and may cause damage to the blood supply of PGs (8). Early studies suggested that injections of fluorescent agents such as methylene blue or indocyanine green (ICG) could aid in the intraoperative detection of PGs, but they have not been widely adopted (9). Moreover, these exogenous fluorophores were considered likely to lead to adverse reactions to the dye or injection (10).

In 2011, Paras et al. first reported that PGs emit autofluorescence (AF) when stimulated with a 785-nm wavelength laser (11). The fluorescence intensity of PGs is reported to be much greater than that of the
thyroid and all other surrounding tissue, with peak fluorescence occurring at 820 to 830 nm ([11]). Moreover, this technique does not rely on any exogenous drugs and dyes, thus avoiding possible adverse reactions. Since then, intraoperative near-infrared autofluorescence (NIRAF) imaging has been increasingly used to detect PGs. In addition, carbon nanoparticles (CNs) with an average diameter of 150 nm have also been found to be useful in identifying PGs, thanks to their high degree of lymphatic system tropism, tracing speed, rate of dyeing black, and a high color contrast with the surrounding tissue ([12]). However, the available data to evaluate and compare the effectiveness of the two methods in identifying PGs are still insufficient. The aim of the present study was to compare NIRAF imaging and CN negative imaging to evaluate the efficiency of NIRAF imaging in detecting PGs in thyroid and parathyroid diseases.

2. Patients and Methods

2.1. Study design

Subjects were 76 patients seen at the Thyroid and Breast Disease Center at Wuhan Union Hospital between July 9, 2020 and August 20, 2021. The inclusion criteria were: (1) age > 18 years; (2) no serious systemic disease; (3) patients underwent surgery; and (4) informed consent was provided. Patients who met any of the following criteria were excluded: (1) missing baseline information; (2) age ≤ 18 years; (3) having a severe systemic disease; or (4) lateral cervical LN metastasis. The data collected in this study included: patient ID, gender, age, the number of PGs that were detected by the two methods, the procedure undergone, and the postoperative histopathological diagnosis. Surgical procedures included total thyroidectomy with bilateral central lymph node dissection (CLND) and unilateral thyroid lobectomy with CLND or parathyroidectomy. Intraoperative CN negative imaging and handheld NIRAF imaging was successively performed for each patient.

2.2. Operative and imaging procedures

All of the surgeries were performed independently by two experienced thyroid surgeons. For the thyroid surgery, an incision parallel to a horizontal skin crease was made. The skin, subcutaneous tissue, adipose tissue, and platysma muscle were successively incised. A skin flap down to the superficial surface of the sternohyoid muscle was dissected upward to the thyroid cartilage and downward to the sternal notches, with the anterior jugular veins left in place ([13]). The midline raphe was identified and incised, and the sternohyoid and sternothyroid muscles were pulled laterally until the thyroid capsule was clearly identified. Care should be taken to keep the fibrous capsule of the thyroid gland intact, otherwise the injected CNs may leak out, contaminate the surgical field, and even cause infection. The lower third of the thyroid gland was exposed and 0.1 mL of CNs (in the form of an injected suspension at a concentration of about 50 mg per ml) were injected into the gland with a fine needle to a depth of about one third of the gland. Excessively dissected glands may cause damage to the surrounding lymphatic network, affecting the action of CNs after injection ([12]). The injected gland was gently massaged with gauze for about 1 minute and the surgeon waited for the gland to completely blacken. The thyroid gland was then mobilized to expose the central neck area. PGs were carefully identified by negative visualization while the LNs and thyroid gland were stained black, indicating positive visualization, and photographed intraoperatively. The operating room lights were subsequently turned off, and an infrared camera probe (Micro-intelligence Technology, Hunan, China) encapsulated in a sterile envelope was placed 20 cm away from the surgical field for near-infrared fluorescence imaging (NIFI) to detect the possible location of PGs (Figure 1). The numbers of PGs detected by the two approaches were recorded separately. The thyroid gland was subsequently removed and a rapid intraoperative pathological examination was performed. Based on the pathology results, the decision was made whether to perform a preventive CLND. For parathyroid surgery, thyroid exposure was achieved as described above. PGs were successfully imaged with CN negative imaging and NIRAF imaging as described above. The diseased PGs were then removed and sent for a rapid intraoperative pathological examination.

2.3. Statistical analysis

Continuous variables with a normal distribution were expressed as the mean ± standard deviation (SD) or as the median and interquartile range (IQR). Categorical variables were expressed in terms of frequency and
percentages. A chi-square test was used to analyze categorical variables, while a t-test was used to compare continuous variables. Statistical significance was a two-sided \(P < 0.05 \). All statistical analyses were performed using R Studio version 4.0.3 (http://www.r-project.org).

2.4. Ethical approval and informed consent

The study was conducted in accordance with the ethical standards of the Declaration of Helsinki as well as national and international guidelines and approved by the Ethical Committee of the Union Hospital, Tongji Medical College of Huazhong University of Science and Technology (0304-01). Written consent for publication of patient data was obtained from the patients themselves.

3. Results and Discussion

3.1. Demographic characteristics and clinical features

During the period between July 9, 2020 and August 20, 2021, a total of 76 patients were identified and included in the present study. Table 1 summarizes the clinicopathological characteristics and treatment information of the patients. The mean age of all patients was 41.5 years (IQR: 32.8-50.5, range: 22-63). Twenty-seven patients (35.5%) were male and 49 (64.5%) were female. The final histopathological diagnosis for patients was THCA in 66 (86.8%), benign nodular goiter in 9 (11.8%) and parathyroid adenoma in 1 (1.3%). Of all patients, 25 (32.9%) underwent a total thyroidectomy plus CLND, 3 (3.9%) underwent a total thyroidectomy, 41 (53.9%) underwent a thyroid lobectomy plus CLND, 6 (7.9%) underwent a thyroid lobectomy, and 1 (1.3%) underwent a parathyroidectomy.

3.2. Rate of identification of PGs by the two approaches

According to the theoretical calculation of four PGs per patient, a total of 206 PGs (this number was calculated by procedure) were potentially identifiable in this study. However, 162 PGs were identified by NIRAF imaging, with a theoretical rate of identification of 78.64%. CN negative imaging identified 156 PGs, with a rate of 75.73%. Intraoperative images are shown in Figure 2. NIRAF imaging had a higher rate of identification than CN negative imaging, although the difference was not significant \((P = 0.481) \). For total thyroidectomy, NIRAF imaging identified 3.2 PGs on average, while CN negative imaging identified 3.0 PGs. There were no significant differences in the number of PGs identified \((P=0.843) \). For thyroid lobectomy, an average of 1.6 PGs were identified by NIRAF imaging and 1.5 PGs were identified by CN negative imaging. There were no significant differences in the number of PGs identified \((P=0.457) \).

To the extent known, this is the first study to provide data on evaluating the feasibility and efficiency of NIRAF imaging to detect PGs in real time during thyroid and parathyroid surgeries by comparing that modality to CN negative imaging. Results indicated that both NIRAF imaging and CN negative imaging identified PGs at an acceptable rate. The rate of PG identification did not differ significantly between NIRAF imaging and CN negative imaging in either total thyroidectomy or thyroid lobectomy, but NIRAF imaging was considered to have greater clinical value and potential for widespread use because of its convenience, safety, and reproducibility. Because of its simplicity and speed, NIRAF imaging had a shorter learning curve for beginners and less
The identification and location of PGs is a well-known challenge of thyroid or parathyroid surgery. Accidental injury or resection may lead to hypoparathyroidism, which means temporary or permanent hypocalcemia and other accompanying symptoms. Many early intraoperative methods of identifying PGs have been reported, such as intravenous injection of methylene blue (10) or ICG (16) or 99m-Technetium sestamibi (MIBI) (17), CN negative imaging (18), measurement of parathyroid hormone levels from needle aspirates of tissue specimens (19) and aspartate aminotransferase to lactate dehydrogenase ratios from suspended tissue specimens (20). However, few of these methods have been widely adopted and promoted in clinical practice (21). Although a frozen section was the gold standard to confirm that a specimen was a PG, obtaining it could damage the integrity of PGs and involve considerable time and cost (8). However, the discovery of the intrinsic fluorescence of PGs at NIR wavelengths has allowed the identification of PGs in real time during surgery. Although the detailed mechanism of AF is not yet clear, the mainstream view is that AF was derived from the calcium-sensing receptor protein, which was most concentrated in the chief cells of PGs, less concentrated in the thyroid, and not present in other tissues of the neck (22). In patients with secondary hyperparathyroidism, the down-regulation of calcium-sensing receptors leads to a decrease in fluorescence intensity compared to that of normal PGs (23). In addition, Squires et al. noted significantly lower quantified absolute values of parathyroid AF in situ and ex vivo and significantly lower parathyroid-to-background AF ratios for patients with vs. without multiple endocrine neoplasia type 1 (MEN1) (24).

In the present study, 78.64% of PGs were detected with NIRAF imaging prior to the dissection, which was consistent with previous reports (25). This is because AF was difficult to detect when PGs were buried in surrounding tissue of a certain thickness. Early studies confirmed that about 77-100% of PGs were detectable by NIRAF imaging (6). Moreover, Bennmiloud et al. studied parathyroid AF in 93 patients and found that 68% PGs were identified via NIRAF imaging before they were visualized by the surgeon (26). A definite advantage of NIRAF imaging is that it can detect PGs in excised specimens more quickly and efficiently than visual identification by a surgeon (Figure 1). This contention was corroborated by Takahashi et al., who emphasized that the sensitivity of NIRAF imaging (82.9%) at detecting PGs from thyroidectomy specimens was significantly higher than that of visual inspection by a surgeon (61.0%) (27). NIRAF imaging did not significantly improve the rate of parathyroid identification compared to CN negative imaging (78.64% vs. 75.73%), but the former is preferred by surgeons because it has a shorter learning curve and involves lower risk. Different studies have reached conflicting conclusions regarding postoperative hypoparathyroidism or hypocalcemia. A multicenter randomized clinical trial involving 241 patients found that NIRAF-assisted thyroidectomy significantly decreased the rate of early postoperative hypocalcemia compared to a conventional thyroidectomy (9.1% vs. 21.7%) with no significant differences in the rate of permanent hypocalcemia (0% vs. 1.6%) (28). However, Papavramidis et al. concluded that the use or lack of NIRAF imaging had no effect on temporary postoperative hypoparathyroidism or hypocalcemia, while NIRAF could drastically

Table 2. Accuracy of identification of 206 parathyroid glands by NIRAF imaging and CN negative imaging

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NIRAF</th>
<th>CN negative imaging</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number identified/total</td>
<td>162/206</td>
<td>156/206</td>
<td>-</td>
</tr>
<tr>
<td>Rate of identification</td>
<td>78.64%</td>
<td>75.73%</td>
<td>0.481</td>
</tr>
<tr>
<td>Mean number identified for total thyroidectomy</td>
<td>3.19</td>
<td>3.00</td>
<td>0.457</td>
</tr>
<tr>
<td>Mean number identified for thyroid lobectomy</td>
<td>1.55</td>
<td>1.55</td>
<td>0.843</td>
</tr>
</tbody>
</table>

NIRAF: near-infrared autofluorescence imaging; CNs: carbon nanoparticles.
The authors have no conflicts of interest to disclose.

Conflict of Interest: The authors have no conflicts of interest to disclose.

References

Received June 9, 2022; Revised June 25, 2022; Accepted June 27, 2022.

These authors contributed equally to this work.

*Address correspondence to:
Wei Shi and Shoupeng Zhang, Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China.
E-mail: shiweihust@163.com, 2013xh0903@hust.edu.cn

Released online in J-STAGE as advance publication June 29, 2022.