The clinical safety and efficacy of conventional transcatheter arterial chemoembolization and drug-eluting beads-transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A meta-analysis

Tao Han1,8, Xiaodan Yang1,8, Yue Zhang1, Gao Li2, Lu Liu1, Tingsong Chen3,*, Zhendong Zheng1,*

1 Department of Oncology, Cancer Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China; 2 Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 3 Department of Invasive Technology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Summary Transcatheter arterial chemoembolization (TACE) plays an important role in the treatment of unresectable liver cancer. We conducted this meta-analysis to compare the clinical safety and efficacy of conventional TACE (C-TACE) and drug-eluting beads (DEB)-TACE. A search for those procedures was performed using the PubMed, EMBASE, and Cochrane Library databases. A meta-analysis of patients who underwent C-TACE or DEB-TACE was conducted. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Of 334 studies, 30 were analyzed. The complete response rate, disease control rate, objective response rate, 3-year survival rate, and non-response rate were significantly higher in patients who underwent DEB-TACE than those in patients who underwent C-TACE. The 1-year survival rate, 2-year survival rate, 30-day mortality rate, complete response rate, disease control rate, complete necrosis rate, non-response rate, objective response rate, progressive disease rate, and recurrence did not differ significantly between patients who underwent C-TACE and patients who underwent DEB-TACE. Patients who undergo DEB-TACE might have a higher complete response rate, disease control rate, and 3-year survival rate than patients who undergo C-TACE. Safety did not differ significantly between C-TACE and DEB-TACE.

Keywords: TACE, DEB-TACE, liver cancer, objective response rate, survival, safety
In TACE, a suspension consisting of a chemotherapy drug and lipiodol is delivered via a catheter to the hepatic artery branch of the diseased liver. The released chemotherapy drug then plays an antagonistic role. Drug-eluting beads transcatheter arterial chemoembolization (DEB-TACE) has often been performed over the past decade. Its major differences compared to conventional TACE (C-TACE) are a higher adsorption capacity of the chemotherapy drug and a slower and more consistent release. Considering the rapid metabolism of chemotherapy drugs in C-TACE, drug use should theoretically be better in DEB-TACE. However, its therapeutic efficacy and safety are debated. Therefore, this meta-analysis was performed.

2. Methods

2.1. Search strategy

A search of the PubMed, EMBASE, and the Cochrane Library databases was conducted. The last search was conducted on July 30, 2016. Search terms were as follows: "TACE," "DEB-TACE," and "hepatocellular carcinoma." The full text of each identified article was read, and irrelevant articles were discarded. If the same subjects were referenced across multiple articles or if an article included more subjects or provided more overall information than another article, then the article was selected for meta-analysis.

2.2. Eligibility criteria

Eligible studies were randomized controlled trials (RCTs) or prospective or retrospective cohort and case-control studies published prior to June 2016 that met the following inclusion criteria: i) directly compared C-TACE and DEB-TACE in patients with HCC; ii) reported at least one of the following data: response rate and survival rate; iii) reported the relative odds ratio (OR) and hazard ratio (HR) or provided data for their calculation; and iv) articles written in English.

Case reports and abstracts or studies with insufficient data were excluded. If multiple articles included the same subjects, only the most recent and complete article was analyzed. When information was incomplete, attempts were made to contact the corresponding authors for additional data.

2.3. Data extraction

Once the researchers agreed on the articles to include, a flow chat was created. The relevant information was as follows: first author, date of publication, country, study design, enrollment period, type of patients, groups, number of patients, number of procedures, previous TACE, locoregional treatment, Child-Pugh stage, Barcelona Clinic Liver Cancer Center (BCLC) stage, Okuda stage, ECOG performance status, and Milan tumor criteria.

2.4. Assessment of study quality

The quality of eligible RCTs and non-RCTs was respectively evaluated using the Cochrane Handbook for Systematic Reviews of Interventions and the Newcastle-Ottawa scale. The Cochrane Handbook for Systematic Reviews of Interventions consists of 6 items: adequacy of the generation of allocation sequence, allocation concealment, blinding, the presence of incomplete outcome data, selective outcomes, and other sources of bias. The Newcastle-Ottawa scale consists of 3 items including selection (4 points), comparability (2 points), and exposure (3 points).

2.5. Data analysis

Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to compare C-TACE and DEB-TACE, and only a random-effects model was used. All tests were two-tailed, and p values of less than 0.05 were statistically significant. The I^2 statistic and Chi-square test were used to evaluate heterogeneity. When $I^2 > 50\%$ or $p < 0.10$, heterogeneity was statistically significant. All statistical analyses were performed using Stata.

3. Results

3.1. Study selection and characteristics

As shown in Figure 1, 334 studies were initially identified. After preliminary exclusion of abstracts or papers not fulfilling the search criteria, 46 potentially relevant articles were examined. Of these studies, 14 were excluded due to incomplete data. Two studies reported information on the same subjects, and two other studies were published by the same group with overlapping recruitment periods. Ultimately, 30 studies, including 5 RCTs and 25 observational studies, involving 3,195 patients (1,444 treated with DEB-TACE and 1,746 with C-TACE) were included in the meta-analysis.

Eight studies were conducted in Italy, 4 studies were conducted in Germany, 4 in the US, 3 in South Korea, 3 in Spain, 2 in Australia, 2 in the UK, 1 in Belgium, 1 in Taiwan, and 1 in Saudi Arabia. Baseline data and the characteristics of studies and patients are shown in Table 1. Five studies were of high quality, one study was of moderate quality, and one study was of poor quality.

3.2. Comparison of the complete response rate

Two studies involving 167 subjects reported the complete response rate. The complete response rate was
3.5. Comparison of the survival rate

Fourteen studies involving 1,645 patients estimated the overall survival (OS) and compared the two groups using log-rank tests (13,16,17,19,21,23,24,26,28,31,34,35,38). As described in Table 2, the two groups had a similar 1-year survival rate (SR) that tended to be higher, albeit not significantly so, in patients who underwent DEB-TACE (OR 1.51, 95% CI 0.48-1.21, \(p = 0.08 \)) (Figure 3). With treatment, survival was prolonged and the OR tended to decrease, albeit not significantly so, thus indicating better long-term outcomes in patients who underwent DEB-TACE (2-year SR: OR 1.32, 95% CI 0.74-2.36, \(p = 0.34 \); 3-year SR: OR 1.92, 95% CI 1.00-3.67, \(p = 0.049 \)). The meta-analysis of plotted HRs revealed no significant differences in the 1-year survival rate and 2-year survival rate. The 3-year survival rate was significantly higher in patients who underwent DEB-TACE than that in patients who underwent C-TACE (OR = 3.59, 95% CI = 1.48-8.72, \(p = 0.0048 \)) without any significant heterogeneity (\(p = 0.91, I^2 = 0\% \)).

3.3. Comparison of the disease control rate

Nine studies involving 909 subjects reported the disease control rate (19,21,25,26,30,32,35,36,38). Of those studies, 2 were published by the same group. Ultimately, eight studies involving 869 patients were analyzed. The disease control rate was significantly higher in patients who underwent DEB-TACE than that in patients who underwent C-TACE (OR = 2.17, 95% CI = 1.22-3.87, \(p = 0.0082 \)), and statistical heterogeneity was evident (\(p = 0.08, I^2 = 44.8\% \)).

3.4. Comparison of the objective response rate

The overall response rate (ORR) was reported in 13 studies (12,17,19,21,25,26,30-32,34,35,36,38). Due to the high heterogeneity found among the included studies (\(\chi^2 = 6.67, \text{d.f.} = 10, I^2 = 71\%; p = 0.011 \)), the DerSimonian and Laird test for the random-effects models was used. The objective response rate was significantly higher in patients who underwent DEB-TACE than that in patients who underwent C-TACE (OR = 2.05, 95% CI = 1.17-3.55, \(p = 0.011 \)), and statistical heterogeneity was evident (\(p = 0.0001, I^2 = 71\% \)). Subgroup analyses of RCTs and observational studies confirmed the non-significant OR in favor of DEB-TACE (OR = 1.27, 95% CI = 0.78-2.07 and OR = 2.40, 95% CI = 1.17-4.90, respectively) and detected, as expected, a high heterogeneity among the observational studies (Figure 2). The high heterogeneity may be caused by response assessment, namely, the timing of the response assessment, the response criteria, and the study design and quality.

4. Discussion

This meta-analysis included a large number of studies on the efficacy and safety of TACE and DEB-TACE. A total of 30 studies (5 RCTs and 25 observational studies) involving 2,920 patients were analyzed. The DEBs, from 150 to 650 nm in size, were loaded with doxorubicin in all of the studies. The C-TACE arms widely differed with regard to the drugs used (Table 1). The current study indicated that patients who underwent DEB-TACE might have a higher complete response rate and disease control rate than patients who underwent C-TACE. In addition, meta-analysis indicated that the 1-year survival rate and 2-year survival rate did not differ significantly between
Table 1. Characteristics of the included studies

<table>
<thead>
<tr>
<th>Study (Ref.)</th>
<th>Arm</th>
<th>Drug</th>
<th>Sample size</th>
<th>Study period</th>
<th>Design</th>
<th>Region</th>
<th>Previous TACE<sup>a</sup></th>
<th>CP (A/B/C)</th>
<th>BCLC (0/A/B/C)</th>
<th>Okuda (I/II/III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsina 2011<sup>10</sup></td>
<td>C-TACE</td>
<td>Cisplatin</td>
<td>74</td>
<td>1996-2010</td>
<td>R</td>
<td>USA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Arabi 2015<sup>11</sup></td>
<td>C-TACE</td>
<td>Cisplatin</td>
<td>28</td>
<td>2006-2010</td>
<td>R</td>
<td>Saudi</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Bloom 2012<sup>12</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>35</td>
<td>2006-2011</td>
<td>R</td>
<td>Australia</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Burrell 2014<sup>13</sup></td>
<td>C-TACE</td>
<td>NA</td>
<td>80</td>
<td>2006-2011</td>
<td>R</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Castelli 2013<sup>14</sup></td>
<td>C-TACE</td>
<td>NA</td>
<td>60</td>
<td>2007-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Cuomo 2011<sup>15</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>45</td>
<td>2006-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Dhanasekaran 2010<sup>16</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>26</td>
<td>1998-2008</td>
<td>R</td>
<td>USA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Facciorusso 2016<sup>17</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>45</td>
<td>2007-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>22/11/12</td>
<td>17/13/15</td>
<td></td>
</tr>
<tr>
<td>Farris 2010<sup>18</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>145</td>
<td>2006-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>93/11/0</td>
<td>2/39/63/0</td>
<td></td>
</tr>
<tr>
<td>Ferré 2011<sup>19</sup></td>
<td>C-TACE</td>
<td>Adriamycin</td>
<td>25</td>
<td>2000-2009</td>
<td>R</td>
<td>Spain</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Frenette 2012<sup>20</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>148</td>
<td>2005-2010</td>
<td>R</td>
<td>USA</td>
<td>NA</td>
<td>83/52/13</td>
<td>12/62/71/3</td>
<td></td>
</tr>
<tr>
<td>Golfieri 2014<sup>21</sup></td>
<td>C-TACE</td>
<td>Epirubicin</td>
<td>88</td>
<td>2006-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>77/11/0</td>
<td>0/41/23/24</td>
<td></td>
</tr>
<tr>
<td>Gorodetski 2015<sup>22</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>95</td>
<td>2000-2013</td>
<td>R</td>
<td>USA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Kloeckner 2015<sup>23</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>174</td>
<td>2002-2013</td>
<td>R</td>
<td>Germany</td>
<td>NA</td>
<td>103/64/7</td>
<td>30/59/77/8</td>
<td></td>
</tr>
<tr>
<td>Kumar 2013<sup>24</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>76</td>
<td>2002-2013</td>
<td>R</td>
<td>UK</td>
<td>NA</td>
<td>51/22/3</td>
<td>8/34/30/4</td>
<td></td>
</tr>
<tr>
<td>Lammer 2010<sup>25</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>108</td>
<td>2005-2007</td>
<td>R</td>
<td>Austria</td>
<td>NA</td>
<td>89/19/0</td>
<td>0/29/70/9</td>
<td></td>
</tr>
<tr>
<td>Liu 2015<sup>26</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>93</td>
<td>2010-2011</td>
<td>R</td>
<td>Taiwan</td>
<td>NA</td>
<td>77/16/0</td>
<td>0/24/69/0</td>
<td></td>
</tr>
<tr>
<td>Malestein 2011<sup>27</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>53</td>
<td>2006-2009</td>
<td>R</td>
<td>Belgium</td>
<td>NA</td>
<td>5/53/0</td>
<td>0/53/0</td>
<td></td>
</tr>
<tr>
<td>Mégas Vericat 2015<sup>28</sup></td>
<td>C-TACE</td>
<td>Cisplatin</td>
<td>16</td>
<td>2006-2009</td>
<td>R</td>
<td>Spain</td>
<td>NA</td>
<td>14/2/2</td>
<td>2/9/5</td>
<td></td>
</tr>
<tr>
<td>Monier 2014<sup>29</sup></td>
<td>C-TACE</td>
<td>Mitomycin C</td>
<td>30</td>
<td>2008-2009</td>
<td>R</td>
<td>USA</td>
<td>NA</td>
<td>10/11/0</td>
<td>1/10/3</td>
<td></td>
</tr>
<tr>
<td>Nicolini 2010<sup>30</sup></td>
<td>C-TACE</td>
<td>Embosphere particles</td>
<td>8</td>
<td>2003-2007</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>5/3/0</td>
<td>2/3/0</td>
<td></td>
</tr>
<tr>
<td>Nicolini 2013<sup>31</sup></td>
<td>C-TACE</td>
<td>Epirubicin</td>
<td>16</td>
<td>2005-2010</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>0/2/0</td>
<td>0/2/0</td>
<td></td>
</tr>
<tr>
<td>Park 2010<sup>32</sup></td>
<td>C-TACE</td>
<td>Epirubicin</td>
<td>22</td>
<td>2008-2010</td>
<td>R</td>
<td>South</td>
<td>NA</td>
<td>14/8/0</td>
<td>0/1/0</td>
<td></td>
</tr>
<tr>
<td>Recchia 2012<sup>33</sup></td>
<td>C-TACE</td>
<td>Lipiodol</td>
<td>52</td>
<td>2008-2010</td>
<td>R</td>
<td>Korea</td>
<td>NA</td>
<td>25/9/0</td>
<td>0/22/12/0</td>
<td></td>
</tr>
<tr>
<td>Sacco 2011<sup>34</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>34</td>
<td>2006-2009</td>
<td>R</td>
<td>Italy</td>
<td>NA</td>
<td>29/4/0</td>
<td>0/22/11/0</td>
<td></td>
</tr>
<tr>
<td>Song 2012<sup>35</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>69</td>
<td>2005-2007</td>
<td>R</td>
<td>Korea</td>
<td>NA</td>
<td>63/6/0</td>
<td>0/28/41/0</td>
<td></td>
</tr>
<tr>
<td>Song 2011<sup>36</sup></td>
<td>C-TACE</td>
<td>Cisplatin</td>
<td>20</td>
<td>2008-2009</td>
<td>R</td>
<td>Korea</td>
<td>NA</td>
<td>16/4/0</td>
<td>0/7/6/7</td>
<td></td>
</tr>
<tr>
<td>Vogl 2011<sup>37</sup></td>
<td>C-TACE</td>
<td>Doxorubicin</td>
<td>108</td>
<td>2005-2007</td>
<td>R</td>
<td>Germany</td>
<td>NA</td>
<td>89/19/0</td>
<td>0/29/81/0</td>
<td></td>
</tr>
<tr>
<td>Wiggermann 2011<sup>38</sup></td>
<td>C-TACE</td>
<td>Cisplatin</td>
<td>93</td>
<td>2003-2008</td>
<td>R</td>
<td>Germany</td>
<td>NA</td>
<td>77/16/0</td>
<td>0/24/76/0</td>
<td></td>
</tr>
<tr>
<td>Zwaka 2011<sup>39</sup></td>
<td>C-TACE</td>
<td>Epirubicin</td>
<td>22</td>
<td>2002-2008</td>
<td>R</td>
<td>South</td>
<td>NA</td>
<td>22/0/0</td>
<td>4/15/2</td>
<td></td>
</tr>
</tbody>
</table>

^aNumber (percentage) of patients who had already undergone TACE before enrollment in the study. C-TACE, conventional transarterial chemoembolization; DEB-TACE, drug-eluting beads-TACE; R, retrospective; RCT, randomized controlled trial; P, prospective; CP, Child–Pugh; BCLC, Barcelona Clinic Liver Cancer; Okuda, Okuda stage; NA, not assessed.
patients who underwent C-TACE or DEB-TACE. However, the 3-year survival rate was significantly higher in patients who underwent DEB-TACE than that in patients who underwent C-TACE. This finding probably suggests that DEB-TACE results in a better OS than TACE. However, this finding is not consistent with the conclusions of a systematic review recently published in this field (17), perhaps because the current meta-analysis analyzed more studies. However, long-term follow-up needs to be conducted and more standard randomized studies need to be assembled to assess the survival benefit of DEB-TACE. The complete response rate, disease control rate, full necrosis rate, non-response rate, objective response rate, progressive disease rate, and recurrence did not differ significantly between patients who underwent C-TACE and patients who underwent DEB-TACE.

Safety did not differ significantly between C-TACE and DEB-TACE. Many clinical research studies suggest that tumor eradication cannot readily be achieved with TACE and that HCC can only be controlled by palliative treatment. Therefore, a low adverse reaction rate and a high tumor response rate in DEB-TACE therapy will be advantageous to patients needing to undergo radical surgery in the short term. Because this population of patients is in the early stage of disease, DEB-TACE can

Table 2. Odds ratios and heterogeneity of 1-year, 2-year, and 3-year survival rates

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>C-TACE</th>
<th>DEB-TACE</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Golzani 2014</td>
<td>88</td>
<td>78</td>
<td>89</td>
<td>80</td>
</tr>
<tr>
<td>Lammer 2010</td>
<td>100</td>
<td>47</td>
<td>89</td>
<td>48</td>
</tr>
<tr>
<td>Sacco 2011</td>
<td>34</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>nRCT</td>
<td>658</td>
<td>623</td>
<td>7</td>
</tr>
</tbody>
</table>

Heterogeneity: Cochran Q = 34.54 (P < 0.0001); I² = 73.0%; Egger bias = 1.64 (P = 0.32)
be an efficient and safe way to control the tumor, down-
regulate the tumor stage, and protect liver function to
the greatest extent. In theory, therefore, DEB-TACE will
lay a better foundation for radical surgery and possibly
prolong long-term survival.

This meta-analysis provides relatively comprehensive
evidence of the benefits of DEB-TACE compared to
C-TACE for the treatment of primary liver cancer, but
there are still some limitations to this study. First, the
evaluation criteria for tumor response in the included
literature were not entirely consistent, and mRECIST and
EASL standards assess tumor response differently, which
may lead to different interpretations. Second, treatment
with conventional technology has matured, but many of
the RCT designs lacked conventional standardization
of evaluation metrics, and this was especially true
for C-TACE involving conventional technology and
chemotherapy drugs for embolism.

In conclusion, this meta-analysis has shown that
patients who underwent DEB-TACE might have a higher
complete response rate, disease control rate, and 3-year
survival rate than patients who underwent C-TACE.
Safety did not differ significant between C-TACE
and DEB-TACE. Therefore, DEB-TACE may be a
better choice for patients with primary HCC than liver
transplantation, liver resection, or partial ablation in the
short term.

Acknowledgements

This work was supported by the National Natural
Science Foundation (grant no. 81702622), Key
Projects of the Liaoning Natural Science Foundation
(2018010153-301), and the Guiding Projects of the
Liaoning Natural Science Foundation (20170540981).

References

1. Boyle DA. Hepatocellular Carcinoma: Implications for
Asia-Pacific oncology nurses. Asia Pac J Oncol Nurs.
2017; 4:98-103.
H, Guo Z. What is the best combination treatment
with transarterial chemoembolization of unresectable
hepatocellular carcinoma? A systematic review and
network meta-analysis. Oncotarget. 2017; 8:100508-
100523.
2015; 65:87-108.
4. Kaneko R, Nakazaki N, Omori R, Yano Y, Ogawa M,
Sato Y. The effect of new therapeutic and diagnostic
agents on the prognosis of hepatocellular carcinoma in
Japan - An analysis of data from the Kanagawa Cancer
5. Pascual S, Herrera I, Irurzun J. New advances in
hepatocellular carcinoma. World J Hepatol. 2016; 8:421-
438.
survival, and response to interferon in liver cancer. N Engl
JW, Lee HS, Kim YJ. Transarterial chemoembolization
can be safely performed in patients with hepatocellular
carcinoma invading the main portal vein and may improve

Figure 3. Forest plot of hazard ratios for patient 1-year survival rate after DEB-TACE and C-TACE. A fixed effect Mantel-
Haenszel model yielded a summary odds ratio not significantly in favor of DEB-TACE with a low heterogeneity. DEB-TACE, drug-eluting bead transarterial chemoembolization; C-TACE, conventional transarterial chemoembolization; RCT, randomized controlled trial; nRCT, non-randomized controlled trial.
the overall survival. Radiology. 2011; 258:627-634.

(Received June 24, 2019; Revised August 21, 2019; Accepted September 26, 2019)