地球はさまざまな植物がいいて、変わった場所、思いもよらないような場所で暮らす植物がたくさんいる。その姿形はさまざまな。それが植物？と思ってしまうこともある。そのような植物たちが、どのように進化し、さまざまな形態を獲得し適応してきたかを知りたく研究を行ってきた。

着生植物は、他の基物上（主に樹上）で暮らす植物で、維管束植物では、着生種は10%にものぼることが知られる（Kress 1989）。そのため、着生植物の存在が植物の種多様性の一部を担っているといっても過言ではないだろう。着生種が最も多く知られるのがラン科で、着生種の6割が該当する。ついでサトイモ科、バイナップル科、シダ植物ウラボシ科と続く（Kress 1989）。着生種はさまざまな分類群で出現することから、着生性は陸上植物の進化過程で何度も起こったと推測される。着生植物の暮らす樹上は、地上と比べて光が豊かで反面、土との接点がないため、地生種と比べ水や養分が不足しがちである（Richards 1996）。着生植物によく見られる特徴として、CAM、貯水器官の発達、吸水器官の発達、多肉化した葉、腐植土を集めるバスケットのような構造、アリ植物などが知られ、これらはLüttge（1989）が編集した『Vascular plants as epiphytes』に詳細がまとめられている。しかしながら、これまで明確な系統関係に基づいて着生性の進化を議論した研究や、近縁種との詳細な比較研究から、着生種に見られる形態がどのように進化してきたかを解析した研究例はほとんどなかった。他の植物体上という特殊な環境で暮らす着生植物が、どのように木登りしてきたのか？その適応形態は何かを明らかにすることを目的に、これまでシダ植物のシノブ科、およびラン科ウラボシ属を主に用いて研究してきた。

シダ植物シノブ科
シノブ科は50-130種あまりが知られ、ほとんど全てが着生する。シノブ科は、ウラボシ科と単系統となり、シダ植物でもっとも多くの着生種を含む。大部分が着生種からなるグループを形成する。複数の遺伝子および遺伝子間領域を用いて分子系統解析を行い、系統関係を類推するとともに、シノブ科と近縁なシダ植物の生活形を調査し、着生種がどのような場所で暮らす植物から出現してきたかを調査した。分子系統解析結果から、シノブ科の近縁種はツルシダ科やオシダ科の植物であることが明確に示唆され、野外観察結果からシノブ科および近縁種は、大きく以下の4つの生活形に分けることができた。i）「地生」。ii）地面で発芽したのち木に登り、常に吸水根を地面に残す「地生性半着生（つる性）」。iii）地面で発芽し木
に登り、のちに根が地面から離れて真正着生状態で生きられる「着生性半着生」。 iv）樹上で発芽し生涯を樹上で過ごす「真正着生」。シノブ科とウラボシ科の多くが真正着生の生活形をもつのに対し、両科の一部やツルシダ（Oleandra）、タマシダ（Nephrolepis）は着生性半着生。ワラビツナギ（Arthrophytis）、ツルキジオ（Lomariopsis）は地生性半着生の生活形を持っていった。生活形の進化を推定するため、得られた分子系統樹に各種の生活形を配置した結果、真正着生シノブ科は、地生からではなく、半着生を経て段階的に進化したパターンが示された（図1）（Tsutsumi and Kato 2006）。この仮説は、シダの木登りは、つる性を経てより登るうちに遂げたことを示したもので、この研究からはじめて提唱された。この研究をまとめた論文は、初めの投稿先ではリジェクトされ、ひどく落ち込んだ時期もあった。しかし今でも海外の学会に出ると、この仮説は大変面白いいと声をかけられることがたびたびあり、それ
なりにインパクトのある研究となったと感じている。
どのような変化を伴ってシノブ科の着生性は進化してきたのだろうか。シノブ科および近縁種の形態を詳細に比較したところ、中でも鱗片の盾状構造は広義の着生種でみられ、真正着生ほど、盾状鱗片の内部構造がより複雑化している傾向が見られた（図2）（Tsutsumi and Kato 2008）。複雑化した盾状鱗片の内部構造は、エアプランツとして有名なバイナップル科 Tillandsiaの葉に形成される。吸水機能をもつ盾状の毛様体と酷似しており、同様な吸水機能がある可能性がある。さらに発達した盾部は、蒸散を防ぐなどの機能があると考えられ、盾状鱗片の発達が真正着生種の進化における形質革命の1つと類推された。その他にも、根茎の長い匍匐性や腹面性、吸水する原根、葉の萎縮の発達、厚い葉とクチクラの発達、胞子サイズの増大など、様々な形質シンドロームをもたらしたと考えられる。

ラン科クモキリソウ属
ラン科クモキリソウ属に着目したのは、着生種と地生種が類縁関係にあると予想され、着生種と近縁な地生種を使って徹底的な形質比較が可能ためである。日本産のクモキリソウ種を、大部分が地生種の中、フガクスマシソウとクモイジガバチソウの2種が着生する。これらの着生種に近縁な地生種を特定するため、核のITS領域と複数の葉緑体遺伝子及び遺伝子間領域に基づいて系統樹を構築した。結果、着生フガクスマシソウは地生オオフガクスマシソウと姉妹群で、これらと地生クモキリソウが姉妹群であった。着生クモイジガバチソウは、地生ジャバチソウと姉妹群で、フガクスマシソウとは異なるクレードに位置した。従って、クモキリソウ科内で着生性は少なくとも2回進化し、どちらもシダ植物シノブ科とは異なり、地上から直に樹上へと進化したと考えられた（Tsutsumi et al. 2007）。
これまで、着生フガクスマシソウ、地生オオフガクスマシソウ、地生クモキリソウを主要に用いて、共生植物による発芽特性の違い、種子サイズの違い、自生地の生育環境の違いなどを調査し、いくつかの適応形質があることを考察してきた（Tsutsumi et al. 2007, Tsutsumi et al. 2011）。それらについては5類別8号で簡単に紹介しているため（堤 2008）。ここでは詳細は割愛し、これらの共生菌と着生性の進化について紹介したい。
ラン科植物は、他とは異なる独特な菌との共生関係をもつ。1例としてあげられるのは、ラン科植物の細胞種子は無胚体で、発芽時に菌の感染を必須とし、必要な養分を菌に依存した状態で発芽・成長する（Alexander et al. 1984, Alexander and Hadley 1985, Rasmussen 1995）。

図2. シノブ科および近縁種の盾状鱗片の縦断切片図。A. 地生性半着生 Arthropertis beckleri. B. 着生性
半着生 Oleandra pistillaris. C. 真正着生 Davallia trichomanoides。鱗片の柄は根茎に深く陥入する。
スケールは100 µm。
など）。つまりどのラン科植物も、少なくとも発芽時には菌に養分を依存した菌従属栄養植物なのである。そのため、発芽・定着には少なくらず菌の影響があることが予想され、実際にラン科植物のいくつかの種では、その分布パターンに菌との関連性が指摘されている（Ogura-Tsujita and Yukawa 2008, Barrett et al. 2010, Roche 2010など）。

今回解析したのは、着生フガクズムシソウと地生種クモキリソウの共生菌である。私自身、フガクズムシソウは樹上で、クモキリソウは地上でしか観察することが少なかったが、両種は、少なくとも花の時期には樹上-地上と住み分けている。しかし両種の種子は、他のランと同様に微小で（Tsutsumi et al. 2007）。どちらも風で樹上・地上に散布されているはずである。そこで、生育場所の分化や着生性的進化に共生菌が関与しているかを調査するため、共生菌の遺伝的分化、菌が植物の生育に与える影響、および、野外での生育場所の分化とその共生菌について解析を行った。

共生菌の遺伝的な分化

まず日本各地からサンプリングした着生フガクズムシソウ、地生クモキリソウから共生菌を単離した。フガクズムシソウやクモキリソウでは、花の内部の維管束周辺の細胞内に菌が菌糸という菌糸の塊をつくった状態で観察される（図3）。花の外側でトリミングして取り除き、厚さ1mm程度の維管束周辺組織の切片を作成し、それを1枚ずつ滅菌されたプラスチックシャーレの下に、先を丸くした滅菌されたガラス棒を用いて、細胞から菌糸をかきだし、菌糸を培地に注いで菌を培養した。数日後、菌糸から伸びた菌糸を滅菌した白金針でとり、新しい培地に移して単離を完了させた。これらの菌株を用いて、菌の遺伝的な分化を調査するとともに、共生培養試験を行い菌による植物の生育への影響を調査した。

単離した菌株を用いて、菌の核遺伝子 ITS 領域およびミトコンドリアのmtLSU 領域を解析し、菌がどのような種類か、またそれらの系統関係を調べた。結果、いずれもトラスネラ属（Tulasnella）というランの共生菌として普通に見られる担子菌（Yukawa et al. 2009）であることが明らかになった。解析した遺伝子に基づいて、共生菌の系統樹を構築し系統関係を調べると、ITS 領域に基づく系統樹では、クモキリソウの共生菌は2つの系統的異なるグループに分かれている（図4）。一方でフガクズムシソウの共生菌は、1つのクレードにまとまり、それぞれクモキリソウの1グループとは極めて近縁ながらも、1塩基の共有した違いが
ある。mtLSUに基づく系統樹では、両植物の共生菌は1つのクレードを形成して混在する形となったが、遺伝子情報は異なっていた。このことから、両種の菌は極めて似ているものの、遺伝的にはわずかに異なることが示唆された。

図4. フタクスズムシソウおよびクモキリソウの共生菌（Tulasnella）の核ITS領域に基づくML系統樹の一部抜粋。枝上の数値はBayes法による事後確率（>0.90）。

菌が植物の生育に与える影響は？

共生菌の違いによる植物の生育パターンの違いを調べるため、フタクスズムシソウ、クモキリソウ両種の種子と、両種から得られた菌株を用いて共生培養を行い、発芽率（胚が種皮を破った状態）と成長率（発芽後、仮根などの器官分化が見られる状態）を調査した。10週間培養した結果、2種とも本来の親株から得られた菌との共生培養では、フタクスズムシソウは3.8-50.9%の種子が発芽し、クモキリソウでは26.7-70.1%の種子が発芽する様子が観察された。その後の成長率は、フタクスズムシソウで12.6-43.9%、クモキリソウでは1.6-39.5%であった。さらにフタクスズムシソウでは、クモキリソウの共生菌でも2.0-45.6%で発芽が見られた。しかしながらその後の成長はほとんど観察することができなかった。一方で、地植種クモキリソウでは、フタクスズムシソウの菌との共生培養下での発芽率は3.0-6.7%と、発
芽そのものがわずかであった。このことから、両種の菌は、遺伝的も、植物の生育へ与える影響も異なることが示唆された。

野外での生育場所の分化
実際に、両種が樹上・地上でどこまで生育しているかを調査するために、着生フガクズムシと地生クモキリソウを用いて自生地で播種実験を行った。フガクズムシソウは、地上でも樹上でも発芽した個体が観察され、樹上では十分に生育したステージが観察されたが、地上では発芽した個体のみで、その後の成長は見られなかった。一方でクモキリソウは、地上でのみ発芽・成熟した個体が見られ、樹上での発芽は観察されなかった。このことから、フガクズムシソウとクモキリソウは、すみわけがおこるステージが異なり、地生種は樹上で発芽できない一方、着生種は地上でも発芽するものの、後に生育できなくなる可能性が考えられる。
さらに面白いことに、解析した個体数は少ないものの、発芽した個体の共生菌の遺伝子情報を解析すると、樹上で発芽したフガクズムシソウ、地上で発芽したクモキリソウは、周辺の親株の共生菌と同じ遺伝子型が得られた。一方、地面で発芽したフガクズムシソウは、クモキリソウの菌と共生関係にあることが明らかになった。

着生性の進化への共生菌の関与
これらの研究から、着生フガクズムシソウと地生クモキリソウでは、共生菌がわずかながら異なり、しかも共生菌パートナーにより植物の生育は異なることが明らかになった。さらに、共生培養下でも自然環境下でも、地生クモキリソウは樹上や着生種の菌ではほとんど発芽しない一方、着生フガクズムシソウの種子は、地上でもクモキリソウの共生菌で発芽するものの、その後の生育が観察されなかった。このことから両植物の間では、共生菌パートナーが分化しており、共生菌パートナーの違いが生育場所の分化に関わっていると考えられる。着生種がより派生的というクモキリソウ節の系統関係を考慮すると、フガクズムシソウで新たな菌パートナーを獲得したことが、樹上での発芽能力、ひいては着生フガクズムシソウの進化につながったと推察される。そして、樹上生活に適応した結果、地上/地生種の菌でも発芽をするものの生育できなくなった可能性がある。

まとめ
冒頭で述べたように、着生種はさまざまな分類群で見られることから、着生性は陸上植物の進化過程で何度も出現してきたと推定される。私の研究は、シダ植物シノブ科とラン科クモキリソウ属という2つのグループの限られた種類を用いた研究であったが、それぞれ進化過程が異なり、シノブ科のように半着生性を経て段階的に進化した過程と、クモキリソウ節のように地生種から直接進化した過程が明らかになった。シノブ科では盾状鱗片の発達が、クモキリソウ属では共生菌パートナーのシフトが、着生性の進化における形質革新の1つと推定されたが、他の植物では、異なる経路で着生性が出現している可能性や、適応形質も全く異なることが予想される。
シダ類（広義）では、ヒカゲノカズラ科、コケシノブ科、チャセンシダ科、シシラン、オシダ科に着生種が多く出現する。それぞれの系統的な位置は離れていることから（Hasebe et
al. 1994, Schneider et al. 2004). 各グループで着生性が進化してきたことが伺える。現生のシダ植物の多く、被子植物の発達した森林の林床下で生まれたことが知られ（Schneider et al. 2004）。現生の着生シダ植物もまた、被子植物の森林が発達したのち樹上へと進出した。比較的新しい植物と考えられる。オシダ科のツツイタ等は、つる性や半着生を経て進化した可能性がある。一方コケシノブ科では、半着生種が知られるが、初期に真正着生が出現し、のちに半着生が出現した可能性がある（Hennequin et al. 2008）。コケシノブ科では鱗片が少ないことから、シソブ科とは異なる形質進化を伴って樹上生活を獲得したに違いはない。一方でヒケノカズラ科やシシラでは、長く匍匐する根茎をもたないことから、つる性を経た段階的な進化でなく、地上から樹上へ跳躍的に進出した可能性が考えられる。

ラン科は全体の7割が着生種といわれ、さまざまな属で着生種が知られる。クモキリソウ属でも、初期に着生のグループと地生のグループに分かれ（Cameron 2005）。それぞれのグループに地生種と着生種の両方が知られることがから、クモキリソウ属の中で何度も木に登ったり地上に降ったりを繰り返していることがわかる。ラン科では、微小種子、ツラネラなど担子菌類との共生関係の獲得などが着生性への前進形質と考えられており（遊川 2004）。とくに種子発芽時に菌共生が必須であることから、菌が生育場所の分化に関わっていることが予想される。しかし種子発芽時の菌共生は、ラン科や一部の菌菌属栄養植物に限られた特徴であり、他の植物では、菌根菌の普例的な存在が指摘されているものの（Wang and Qiu 2006）。ランほど関係は密でなく、菌根菌とは異なる形質進化を伴って着生性が出現してきた可能性が高い。現在着目しているツシマ科植物の一部では、着生種で地生種で菌根菌の違いは今のところ検出されていない。

これまでの着生植物に関する研究はごく一部の分類群を用いた研究にすぎないが、1つずつ研究例を積み重ねていくことで、着生植物の進化と多様性を知ることにつなげていきたいと考えている。

謝辞

本研究を行うにあたり、加藤雅啓博士（国立科学博物館）をはじめ、遊川知久博士（国立科学博物館）、三吉一光博士（千葉大学）のご指導いただきました。クモキリソウ属の共生菌に関する研究は、細犬剛博士（国立科学博物館）、阿部淳一博士（筑波大学）、辻田有紀博士（東北大学）をはじめ、専門分野の方々にご助言いただきました。植物の栽培では、筑波実験植物園と鈴木和浩氏（筑波実験植物園）にご協力いただきました。またここには記しきれないほど、各地で植物を知り尽くした数多くのプロ・アマの方々に、フィールドワークや採集にご協力いただいた。東京大学、国立科学博物館の研究室の皆様には大変お世話になった。さまざまな分野の方々のサポートなしには、これらの研究は成し遂げることができなかった。この場を借りて、厚くお礼を申し上げます。

引用文献


