北九州市お糸池における自然雑種インバモの起源と現状

天野百々江1・大野睦子2・須田隆一3・飯田聡子4・角野康郎1・小菅桂子4

1 神戸大学理学研究科生物学科
2 北九州市八幡西区光ヶ丘台3丁目27-4
3 福岡県保健環境研究所（〒818-0135 太宰府市大字向佐野39）
4 神戸大学自然科学研究科先端融合研究環遺伝子実験センター
（〒657-8501 神戸市灘区六甲台町1-1）

Momoe AMANO1, Mitsuko OHNO2, Ryuichi SUDA3, Satoko IIDA4, Yasuro KADONO1, and
Keiko KosUGE1. Origin and present status of Potamogeton × inbaensis in
a natural population of Oitoike pond, Kitakyushu-City, Japan
1 Department of Biology, Graduate School of Science, Kobe University,
Rokkodai 1-1, Nada, Kobe 657-8501, Japan
2 Mitsusadai 3-27-4, Yahatanishi, Kitakyushu 807-0805, Japan
3 Fukuoka Institute of Health and Environmental Sciences,
Mukaizano 39, Dazaifu 818-0135, Japan
4 Research Center for Environmental Genomics, Kobe University,
Rokkodai 1-1, Nada, Kobe 657-8501, Japan

Abstract

Potamogeton × inbaensis Kadono is a natural hybrid between P. malaianus and P. dentatus.
Oitoike pond, Pref. Fukuoka, is the only natural habitat of two endangered species, P. dentatus
and P. × inbaensis, in Japan, but their population has been decreasing in recent years. We
examined the direction of the hybridization and morphological characters in existent samples growing
in Oitoike pond and herbarium specimens collected in the past. Potamogeton × inbaensis consisted of two types based on typification of the nuclear gene adh and the chloroplast gene rbcL:
the hybrids of P. dentatus mothers (D-type) and those of P. malaianus mothers (M-type). Both
types were roughly distinguishable by the leaf morphology. All existent P. × inbaensis in
Oitoike pond was the M-type, but only the D-type was collected in the past. In drought experiments,
P. dentatus exhibited lower survival than P. malaianus and M-hybrid. The habitat degrada-
tion such as increasing turbidity and a drought may cause the selective disappearance of the D-
hybrids.

Key words: adh, drought tolerance, endangered species, Oitoike pond, Potamogeton, rbcL, reciprocal hybrids.

要旨　インバモはサバモとガジャモク間の自然雑種である。福岡県北九州市のお糸池では国内で唯一、
絶滅危惧種ガジャモクとインバモが野生状態で継続的に生育しているが、近年、これらの個体数が減少
しつつある。お糸池の現存個体と博物館所蔵の過去の標本を用いて、インバモの交配の方向と形態的特
徴を調べた。核遺伝子adhと葉緑体遺伝子rbcLを解析した結果、インバモにはガジャモクを母親とする
D型とサバモを母親とするM型があり、両者は葉の形態である程度区別できた。お糸池では、過

ガシャモクは環境庁福岡県のレッドデータブックの絶滅危惧IA類に指定され（環境庁2000, 福岡県2001）、インバモは福岡県レッドデータブックの絶滅危惧IA類に指定されている。また、お池は国内で唯一、両種が自然状態で継続的に生育してきた場所である。しかし、2000年頃からこれら個体群が激激に減少しており、ガシャモクとインバモの生育環境を保全することが急務となっている（大野 2004, 須田他 2004）。

近年、手賀沼近の人工池において埋木種子からガシャモクやインバモの再生が報告された（斎藤 1991, 百原他 2001, Uehara et al. 2006）。これら再生個体とお池の個体および推定両親種における遺伝子配列の解析より、インバモはササバモを母親としてガシャモクの花粉がかかった雑種であることが示された（Ito et al. 2007）。ガシャモクを母親としてササバモの花粉がかかった雑種はみつかっておらず、解析数が少なく交配が本当に一方向なのかはまだ不明確でない。ヒルムシロ属の自然雑種オオササエビ（P. anguillanus Koidz.）では、母性効果による生殖形成能と生育深度の差が雑種の適応度を大きく左右することが示されている（Iida et al. 2007）。インバモにおいても交配方向の違いにより、生育に適した環境が異なるならば、保全策を計画する上で重要な基礎情報となる。

そこで本研究では、お池のインバモについて、現存するほぼすべてのバッチから試料を採集し、核と葉緑体の遺伝子マーカーにより雑種状態と交配の方向性および形態変異を比較解析した。またインバモのように個体数が減少している希少種では、必ずしも現状よりももとの個体群の生育状況と一致しない可能性もある。そこで過去に採集された博物館所蔵標本についても同様の解析を行い、現存するインバモと比較した。さらに、予備的な栽培実験をもとに、お池におけるガシャモクとインバモ個体数の減少の要因を推定し、生育環境の保全への提案を行った。
材料と方法

1. 材料

解析に使用した材料をTable 1に示す。本研究では、ササパモとガシャモクの学名は角野 (1994)に従い、それぞれP. malaianus Miq.とP. dentatus Hagstr.として表した。角野 (1983)ではインバモ（P. inbaensis Kadono, イオタイプ：Table 1のサンプル番号No. 15）のなかにササパモより似ているものがあり、これをヒロハノササパモ（nm. pseudo-malaianus Kadono, イオタイプ：No. 16）としたが、本研究では両者を区別せずに扱った。

お茶池での観察は2004年9月に行い、ポットと栽培用鉢を用いて沈水シートの一部を確認されたすべてのバッチから採集した（インバモ5バッチ、ガシャモク8バッチ）。ササパモはお茶池には生育していないので、周辺の水域や西日本の各地から採集したものを用いた。

また、ササパモにガシャモクの花粉を掛け合わせた人工F1交配個体（No. 42: 大野 2005）も実験材料とした。採集した植物はさく葉標本を作成するとともに神戸大学の園場水槽にて栽培して観察に用いた。標本は京都大学(KYO)と神戸大学に収蔵のものを使用した。

2. 種性の確認

花粉形態と結実状態を実体顕と光学顕微鏡で観察し、個体の種性を調べた。花粉種性は5%コットンブール・グリセリン溶液により花粉を染色し、花粉形態や細胞質の状態を観察した。また、栽培個体を用いて3種間で開花の状態を比較した。

3. 遺伝子解析

乾燥葉10 mgより、小菅他 (2005)の方法でDNAを抽出した。種子状態を確認するため、核遺伝子のマーカーとしてはadh A（アルコール脱水素酵素）のインタロント部分を用いた。

種子形成の方向性は、一部の種を除いて日本産ヒルミシロ属では配列が種特異的（飯田、未発表）である葉緑体遺伝子rbc L（ルビスコ大サブユニット）を用いた。增幅方法や塩基配列の決定はIida et al. (2004, 2007)に準じて行った。各遺伝子断片は2段階PCR法（semi-nested PCR）を行い、第1增幅はIida et al. (2007)のプライマーセットを使用して增幅した。第2增幅に新たに用いたプライマーはそれぞれadhA161: 5'-ATTTTTGCAAGAAGAGAGGCGGC-3'; rbcL637: 5'-GAACGTAAACTCACAACCATTTATG3'である。增幅後の液5 μlはTAE-アガロースゲル（2.0%）にて100 V, 60 分間電気泳動した。

4. 形質解析と栽培実験

茎の中心柱の維管束の観察は、個人あたり数カ所で節間中央部の横断切片を作製し、0.01%カフラニン水溶液で5分間染色して光学顕微鏡で観察した。また、標本サンプルでは数時間浸水中で浸潤させた茎を用いて観察を行った。

沈水葉の形態は位置によって変異が大きく、特に水面近くの葉では気孔が分化して下部の葉とは形態が異なる。栽培個体を用いた予備的観察より、葉が10枚以上展開している主茎の上部から3〜7番目までの沈水葉の形態は比較的安定していたので、これらの部位の葉を用いて葉柄長、葉身長、葉脇幅を計測した。

沈水条件での生育状況の観察は神戸大学の園場水槽（深さ50 cm）にて行った。また、沈水時における生存能を調べるため、Iida et al. (2007)の方法に従ってインバモとガシャモク、ササパモの各2個体で沈水栽培実験を行った。

NII-Electronic Library Service
Table 1. Collection localities, DNA types and stele type of examined Potamogeton taxa

<table>
<thead>
<tr>
<th>No.</th>
<th>Taxon</th>
<th>Specimens*</th>
<th>Collection year</th>
<th>Locality</th>
<th>nDNA type</th>
<th>cpDNA type</th>
<th>Stele type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>P. × inbaensis</td>
<td>M. Amano 0051-0055 (Cult.)</td>
<td>2004</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d + m</td>
<td>M</td>
<td>Oblong-like, Trio-like</td>
</tr>
<tr>
<td>6-11</td>
<td>M. Ohno 2003</td>
<td>2003</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d + m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>M. Ohno 3651</td>
<td>1987</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Oblong-like</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I. Ito 1983</td>
<td>1983</td>
<td>Teganuma Lake, Abiko-city, Chiba Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Tri-4-like</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Y. Kadono 1312</td>
<td>1980</td>
<td>Inbanuma Lake, Narita-city, Chiba Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Tri-1-like</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Y. Kadono 3102</td>
<td>1980</td>
<td>Inbanuma Lake, Narita-city, Chiba Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Oblong-like</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Y. Kadono 1256</td>
<td>1980</td>
<td>Inbanuma Lake, Narita-city, Chiba Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Tri-1-like</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>M. Usuba 9085</td>
<td>1978</td>
<td>Inbanuma Lake, Narita-city, Chiba Pref.</td>
<td>d + m</td>
<td>D</td>
<td>Tri-1-like</td>
<td></td>
</tr>
<tr>
<td>18-23</td>
<td>P. dentatus</td>
<td>M. Amano 0056-0061 (Cult.)</td>
<td>2004</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d</td>
<td>D</td>
<td>Oblong</td>
</tr>
<tr>
<td>24</td>
<td>M. Amano 0001 (Cult.)</td>
<td>2003</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d</td>
<td>D</td>
<td>Oblong</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M. Ohno 3652</td>
<td>1987</td>
<td>Oitoike Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d</td>
<td>D</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>M. Amano 0007 (Cult.)</td>
<td>1981</td>
<td>Teganuma Lake, Abiko-city, Chiba Pref.</td>
<td>d</td>
<td>D</td>
<td>Oblong</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>S. Miki 1940 (KYO)</td>
<td>1940</td>
<td>Shosaike, Qingdao, China</td>
<td>d</td>
<td>D</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>C. Hashimoto 4419 (KYO)</td>
<td>1937</td>
<td>Biwa Lake, Otsu-city, Shiga Pref.</td>
<td>d</td>
<td>D</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>31-32</td>
<td>S. Kitamura 1928 (KYO)</td>
<td>1928</td>
<td>Biwa Lake, Otsu-city, Shiga Pref.</td>
<td>d</td>
<td>D</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>P. malaianus</td>
<td>M. Amano 0062 (Cult.)</td>
<td>2004</td>
<td>Futatsugawa, Yanagawa-city, Fukuoka Pref.</td>
<td>m</td>
<td>M</td>
<td>Tri-4</td>
</tr>
<tr>
<td>34</td>
<td>M. Amano 0010 (Cult.)</td>
<td>2003</td>
<td>Shiimutake Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>m</td>
<td>M</td>
<td>Tri-4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>S. Iida 03011</td>
<td>2003</td>
<td>A ditch, Higashiyo-city, Ehime Pref.</td>
<td>m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>S. Iida 00005</td>
<td>2000</td>
<td>Ohike Pond, Dazaifu-city, Fukuoka Pref.</td>
<td>m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>37-38</td>
<td>M. Amano 0005-0006 (Cult.)</td>
<td>2000</td>
<td>Biwa Lake, Biwa-cho, Shiga Pref.</td>
<td>m</td>
<td>M</td>
<td>Tri-4</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>S. Iida 03026</td>
<td>2000</td>
<td>A ditch, Shinasahi-cho, Shiga Pref.</td>
<td>m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Y. Kadono 7158</td>
<td>1991</td>
<td>Takedagaewa, Kanazu-cho, Fukui Pref.</td>
<td>m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>T. Nakamura 559</td>
<td>1991</td>
<td>A ditch, Higashimura, Fukushina pref.</td>
<td>m</td>
<td>M</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>P. malaianus × P. dentatus (F1)</td>
<td>M. Amano 0003 (Cult.)</td>
<td>2004</td>
<td>Shiimutake Pond, Kitakyushu-city, Fukuoka Pref.</td>
<td>d + m</td>
<td>M</td>
<td>Oblong-like</td>
</tr>
</tbody>
</table>

* Herbarium specimens of Kyoto University Museum (KYO), Kobe University and cultivated samples at Kobe University (Cult.).
結果

1. 種性の確認

圃場水槽における栽培実験では、ガシャモクは5〜10月、ササワモは6〜10月、インバモは5〜10月に水草の葉腋から花茎を伸長させて水面上に花穂をつける。水草1本あたりの花序数はガシャモクとササワモでは3個以上であったが、インバモでは0〜3個で花序をつける芽が多かった。他のヒルミシ類属植物と同様に3種ともに花は4数性で単花被花、雌雄異株である。ガシャモクとササワモでは、雌雄期の終わるころに花被片の基部が伸長して平開すとともに、花粉が裂開して大量の花粉が放出された。花粉は風によって運ばれ、受粉後、約1カ月で果実が熟した。一方、インバモでは雌雄期のあとの花被片の伸長・展開、花粉の放出が起こらず、果実も成熟しなかった。ガシャモクとササワモでは花粉が球形で径約25μm、コットンブルーで濃く染まり、組織が観察されていた。インバモでは花が前2種に比べると小さく、花粉も形が不揃いで径約18μmと小型でコットンブルーでは染色されず、組織がほとんどなかった。インバモの標本ではサンプル番号12と15にのみ花序があったが、栽培個体と同様には小さくて正常な花粉は認められなかった。

印籠沼のインバモは花が完全に開花せず、花粉が不揃いで、種子も結実しないことが報告されており（角野1983）、お茶のものでも同様な結果が得られた。

2. 雑種状態の確認

標本のインバモには花序がないものが多く稔性が確認できないので、雑種状態を確認するために核DNAにコードされるadhA遺伝子のイントロント3を解析した。ササワモとガシャモクの栽培個体では、長さの異なるadhA断片がそれぞれ1本ずつ増幅された。これらの塩基配列を直接決定したところ、2種のadhA断片間では13以下の塩基置换と2塩基（19塩基と1塩基）の欠失/挿入が認められた（Fig.1）。ガシャモクのadhA断片はすべての標本のサンプルで同じ配列であった（登録番号No.AB332413）。ササワモでも同様に解析した個体（No.33、34、37）ではすべてadhA断片の配列が同じで、登録配列（No.AB277752）と完全に一致した。

Fig. 1. Intron 3 sequence of adhA in Potamogeton dentatus (Accession No. AB332413). P × inbaensis and P. malaianus. → Gap, •: Identical site.
Fig. 2. Amplified adhA fragments of Potamogeton dentatus (sample No. 18, 20: d-type), P. malaianus × P. dentatus (42: d + m-type), P. × inbaensis (1, 6: d + m-type), and P. malaianus (34, 37: m-type). Lane numbers correspond to sample number in Table 1.

Fig. 3. Partial sequence of rbcL in Potamogeton dentatus (Accession No. AB332412). P. × inbaensis and P. malaianus. •: Identical site. Numbers indicate base positions from the start codon.

Iida et al. 2007）とも一致した。一方、インバモ (No. 6) では長さの異なる 2 本の adhA 断片が増幅され、クローニングにより配列を決定したところ、それぞれササバモとガジャモクの配列と同じであった (Fig. 1)。ガジャモクの adhA 断片はササバモに比べ 20bp 長く、増幅産物の長さで区別できることより (Fig. 2)、サイズをもとにガジャモクタイプ (d 型) とササバモタイプ (m 型) として Table 1 に示した。インバモのすべてのサンプルと F1 交配個体で d 型と m 型の増幅断片がともに検出された (d + m 型)。核遺伝子マーカーの特徴より、インバモはガジャモクとササバモの雑種状態であることが示された。

3. 雑種形成の方向性

雑種インバモの交配の方向性を明らかにするため、母性遺伝子葉緑体遺伝子 rbcL の塩基配列の解析を行った。ガジャモク rbcL (No. AB332412) とササバモ rbcL (No. AB196945, Iida et al. 2007) 間には 88 番の塩基置換があり、明確に区別できる (Fig. 3)。 すべてのサ
シンプルで\(rbcL\)の塩基配列を決定した結果、ガジュマクにもササベモにも種内変異は存在しなかった。しかし、インベモにはガジュマク\(rbcL\)と同様配列を持つ個体（D型）と、ササベモ\(rbcL\)と同様配列を持つ個体（M型）の2種類が存在した（Table 1）。

インベモはガジュマクとササベモの双方向の交配により生じたことが明らかとなった（Table 1）。また、採集年代によって交配の方向に偏りが認められ、お糸池にて2003年と2004年に採集し、栽培している個体はすべてササベモを母親とするM型であった。しかし、1987年以前に採集されたインベモはお糸池のものも含めすべてガジュマクを母親とするD型であった。

4. 茎維管束と葉の形質と栽培実験

ヒルムシロ属では茎の中心柱の維管束の配列様式は分類形質として重要である（Ogden 1943）。茎の中心柱の維管束数と配列様式を調べた結果、同じ個体でも茎の位置によって維管束数は多少変化した。ガジュマクでは3〜4本の維管束が縦に並ぶOblongタイプであった。ササベモでは8〜10本の維管束が環状に配列するTrioタイプであった。一方、インベモでは3〜10本の維管束がみられ、配列様式は前2種の中間的な状態で、Oblongタイプに似た配列(Oblong-like)を持つ個体とTrioタイプに似た配列(Trio-like)を持つものがあった（Table 1）。このような維管束の特徴は、お糸池（大野 2004）と手賀沼の人工池（Ito

![Fig. 4. Comparison of leaf characters and chloroplast DNA types of three Potamogeton taxa. Data are presented as mean±SD. ●: P. dentatus, □: P. malaianus, △: P. × inbaensis with D (dentatus)-type cpDNA, ▲: P. × inbaensis with M (malaianus) -type cpDNA. Numbers attached to symbols correspond to sample numbers in Table 1.](image-url)
葉の形態を比較するため，葉身長／葉身幅（L/W比）と葉柄長を測定した結果をFig. 4に示す。葉の形質は個体内で変異が大きいことが報告されていたが(Ito et al. 2007)，本研究では測定に用いる葉を沈水葉に限定し，位置を一定にした結果，個体内の変異幅は比較的

Fig. 5. Submerged shoot of three Potamogeton taxa. A: P. dentatus, B: P. malaianus, C: P. × inbaensis with M (dentatus)-type cpDNA, D: P. × inbaensis with M (malaianus)-type cpDNA.
小さくなった。ガジャモクとササハモは葉柄長とL/W比で明確に区別できた。ガジャモクは葉柄長が短く（2.5〜7.5 mm）、葉身は幅広く短い（L/W比：3.4〜5.4）。ササハモは、葉柄長が長く（16〜56 mm）、葉身は細長い（L/W比：5.7〜13.5）。インバモンの葉の形質は両種の中間状態で、ガジャモクを母親とするD型のインバモンの葉はガジャモクに似る傾向があり、葉柄は短く（8〜20 mm）、葉身は幅広く短い（L/W比：3.2〜5.5）。一方、ササハモを母親とするM型の個体の葉はササハモにより似ており、葉柄は長く（10〜28 mm）、葉身は細長い（L/W比：6.5〜11.0）。

角野（1983）は印縄沼のインバモンにはガジャモクとササハモとササハモの配列タイプで維管束数が6本のもの（ヒロハノササハモ）があり、後者は葉身と葉柄が長くてササハモ的であると報告した。両者のイソタイプ（サンプル番号No.15, No.16）では、維管束の配列は異なるが（Table 1）、その数は変化し両者の葉緑体タイプはともにD型で葉の特徴はガジャモクに似ていた（Table 1, Fig. 4）。維管束の特徴がどのような遺伝的な背景によって決定されるのかは不明であるが、少なくとも葉の形態（Fig. 5）は種とその交配の方向性を認識する形質として有用である。

沈水条件における栽培実験では、M型インバモン、ガジャモク、ササハモのいずれの個体も10月頃まで沈水茎を伸長して順調に生育した。12月頃には沈水茎が枯れけて残芽が形成され、翌年の4月には残芽から新しい沈水茎が伸長した。2005年7月初め、沈水栽培を1年間行った個体を栽培容器（L×W×D：31×23×7 cm）ごと水から引きあげ、潜水条件（水位-3 cm）にした。潜水条件にすると沈水茎はすぐに乾燥し、1週間程度で地上部はすべて枯れた。栽培開始より約1ヶ月後、いずれの種も地下茎から新たに陸生茎を伸ばした。陸生茎には沈水葉（気孔なし、葉身の細胞層は3層）より小型の陸生葉（気孔あり、葉身の細胞層は4〜6層で柵状・海綿状組織が分化）が展開した（Fig. 6）。ササハモとM型インバモンは次々と陸生茎を伸ばし、冬季に残芽を形成して地上部が枯れるものの春には再び陸生茎が伸長し、潜水条件のまま翌年の秋頃まで順調に生育した。ガジャモクは他の2種に比べると陸生茎は小形で数も少なかった。また、潜水実験を開始した年には数本の陸生茎が見られたが、翌年の春には新芽が伸長せず、地下茎も枯死していた。これまで、ササハモは夏の潜水時に頻繁に陸生茎を形成し、ガジャモクは陸生型を形成しないとされていた（角野1994）。本研究より、M型インバモンもササハモと同様に陸生型を形成すること、また、ガジャモクも一部程度は陸生型を形成できるが長期的に個体を維持できないことが明らかになった。
考察

本研究は、日本国内で唯一、インバモとガシャモクが現在も継続的に生育しているお余池のインバモを中心に検性や遺伝子型、形態を調査したものである。核遺伝子 adhA の特徴と検性がないことより、調査したインバモはすべてガシャモクとササバネ間の F1 雜種であると推定された。また葉細体遺伝子 rbcL の解析より、現存するお余池のインバモはすべてササバネにガシャモクの花粉がかった M 型であり、その逆のガシャモクを母親とする D 型の雑種は見つかなかった。この結果は利根川水系における埋土種子から再生したインバモの遺伝子型の調査結果 (Ito et al. 2007) と一致した。一方、博物館所蔵標本の調査結果では、1987 年以前に採集されたインバモはお余池のものも含めてすべて D 型であった。したがって、インバモはガシャモクとササバネ間の双方向の交配によって生じた雑種と推定された。また、D 型と M 型のインバモは葉の形態（葉柄長、葉身の長さと幅の比）で、ある程度区別できることが明らかとなった。

ガシャモクとササバネ間の双方向の交配によってインバモが生じたならば、D 型と M 型は混生していてもおかしくない。しかし、博物館標本にも現存するお余池にも、混生していた証拠は残っていない。博物館所蔵標本における遺伝子型の偏りは、D 型のインバモが希少種のガシャモクに似ており、ササバネに似た葉をもつ M 型よりも選択的に採集された可能性がある。一方、2004 年に行なったお余池の調査では網羅的に植物体断片を採集して遺伝子型を解析したのでサンプリングの偏りはない。お余池ではガシャモクが確認された 1987 年以降、ササバネの生育は確認されていないことから、現存するインバモ個体は継続的な交配によって生じたのではなく、過去に形成された雑種個体が切れ藻や地下茎によりクローナルに繁殖したものか、あるいは埋土種子に由来すると考えられる。お余池のガシャモクとインバモは 2000 年頃から急激に減少しており（大野 2004），この時期に D 型のインバモが消え、現在のような M 型のみ生存するという偏りが生じたと推定される。

M 型のインバモのみが残っている理由として雑種形成における母性効果が考えられる。ササバネとヒロハノエビモ（P. perfoliatus L.）の自然雑種オササエビモは交配の方向により雑種の性質が異なり（Iida et al. 2007）、ササバネを母親とする雑種は、母親種と同様に渇水条件では陸生型を形成し、主に浅い水域に分布する。一方、ヒロハノエビモを母親とする雑種は、母親種と同じく陸生型形成能が低く、深い水域に優占的に分布する。インバモでは現在 D 型が生育していないため、交配の方向の異なる雑種間で陸生型形成能や生育深度の比較はできていない。しかし、ガシャモクはある程度は陸生型を形成できるが、ササバネに比べて渇水条件下で生存の能力が非常に低く、ササバネを母親とする M 型インバモは、母親種と同様に陸生で生育の能力が長期的に陸生型を維持できる。この結果よりインバモでもオササエビモと同様に、交配の方向により生態的特性が異なり、その適応度に違いが生じている可能性がある。

お余池ではガシャモクの分布調査が行われ（大野 2004，須田他 2004），1998 年に池の中央～南側の区域（水深約 3 m）に生育していた多数のガシャモクは 2003 年には確認されておらず、北側においても 2003 年には集団が激減している。また、2002 年の夏季の大渇水により池の西側の水深約 1.5 m の地域（帯北区域）の一部が干陸化し、そこに生育していたほとんどのガシャモク集団が翌年には消滅した。我々の 2004 年の調査でも、池の北側（水深約 2 m）ではガシャモクとインバモが見られたが、帯北区域には両者ともに生育して
おらず、池の南側も白濁のため植物体は確認できなかった。また、2002年と2003年に行われた水質調査より、ガシュモクの衰退要因は栄養塩化による水質の悪化ではなく、透明度の低下が関与するという指摘されている（須田他2004）。これ以前には水質が調査されていないので本来の生育環境は把握できないが、透明度の低下がガシュモクの生長する春から夏季に著しいことより、池水の濁度を下げるための濁り浄化や濁りを生じさせている原因の特定が急務である。また、かってガシュモクとインバモが生育していた印施沼と手賀沼では、埋土種子からの再生が報告されている（Uehara et al. 2006, Ito et al. 2007）。お糸池でも生育環境が改善されれば、埋土種子からの再生が期待される。

本研究を行うに当たり、標本の調査等にご協力頂いた、京都大学総合博物館の永益英敏博士に深く感謝します。

引用文献

福岡県。2001。福岡県の希少野生生物―福岡県レッドデータブック 2001一、福岡県環境部自然環境課、福岡。

大野睦子。1987。北九州の植物 (11) インバモ。わたしたちの自然史 26:19。

大野睦子。1988。北九州の植物 (12) ガシュモク。わたしたちの自然史 27:22。

大野睦子。2004。北九州市産するヒルミシロ属の種間雑種インバモ。水草会誌 81:10-17。

大野睦子。2005。北九州市産するヒルミシロ属の種間の人工受粉実験 インバモの正体は？ わたしたちの自然史 91:9-13。

水草会誌。1991。ガシュモク出現。水草会誌 43:24-26。

須田隆一・真鍋徹・大野睦子・竹尾敦子。2004。絶滅危惧種ガシュモクの生育状況と生育環境。北九州市環境科学研究所第11回アクア研究センター研究発表会要旨集：pp.35-38。
