テクニカルレター

誘導結合プラズマ発光分析法によるビスマス系酸化物超伝導体の組成分析

植崎 祐悦*, 今野 栄行*, 萬野 哲也*, 戸沢 浩一*, 竹内 正邦*

Component analysis of bismuth-system superconductor by inductively coupled plasma-optical emission spectrometry

Yuetsu DANZAKI, Hideyuki KONNO, Tetsuya ASHINO,
Kouichi TOZAWA and Masakuni TAKEUCHI*

*Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577
(Received 4 July 2000, Accepted 11 September 2000)

Elemental analysis of oxide superconductors yields useful information about their properties. As an analytical method, inductively coupled plasma-optical emission spectrometry (ICP-OES) is more convenient than spectrophotometry or titrimetry. However, various analytical errors are sometimes included in the procedure of ICP-OES, especially because of spectral and non-spectral interferences. To minimize these errors, the solutions used for calibration curves are ideally prepared by matrix matching with the sample solution. However, it is difficult to obtain the calibration relation unless standard reagents containing no impurities are obtained, and unless binary alloy samples are analyzed. In this work, instead of a matrix-matching method, a sequential correction method is suggested, where several error factors, such as fluctuation of the emission intensities, spectral interferences, non-spectral interferences and blank values, are individually corrected on the basis of calibration curves prepared with single-element solutions. By using the sequential correction method, we have investigated an ICP-OES total analysis for bismuth-system oxide superconductors.

Keywords: bismuth-system oxide superconductors; ICP-OES; sequential correction method; spectral interferences; non-spectral interferences.

1 緒 言

酸化物超伝導体として様々な化合物系が研究されているが、その物性を理解するために組成分析は重要な情報を与える。分析方法としては、吸光光度法1)や滴定法2)が挙げられるが、より簡便な誘導結合プラズマ発光分析法（ICP-OES）3)-5)がより広範に用いられている。ICP-OESによる定量分析を行う場合は、各種の誤差因子を正確に評価し取り除く必要がある。特に、スペクトル線の重なりに起因する分光干渉6)、及びプラズマ中に置かれ、物理相互作用に起因する非分光干渉7)は、大きな誤差を与える場合があり、

注意を要する。理想的な補正として、検量線作成用の溶液を試料と合わせてマトリックスマッチングして調製する方法がある。しかし、この場合、不純物を全く含まないか、あるいは少なくとも分析法の定量下限以下しか含まない標準試薬を入手する必要があり、また三元系以上の試料に対しては、完全なマトリックスマッチングを行うことは困難であることがある。

本報告では、ICP-OESにおける種々の誤差因子を、単一の元素溶液での検量線を基準として、その後、誤差の有無を次検討して計算により補正する方法を適用した。本法では、計算に時間を要するが、より正確な結果が得られる。分析例として、ビスマス系酸化物超伝導体の全分析について報告する。

* 東北大学金属材料研究所 980-8577 岡崎県弘前市東区片平 2-1-1
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP source</td>
<td>Hitachi P-5200 ICP emission analysis system</td>
</tr>
<tr>
<td>Plasma operating power</td>
<td>1.0 kW</td>
</tr>
<tr>
<td>Frequency</td>
<td>27.12 MHz</td>
</tr>
<tr>
<td>Argon flow rates</td>
<td>Outer gas 12 l/min, Intermediate gas 0.5 l/min, Carrier gas 0.5 l/min</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>Vertical dual monochromator</td>
</tr>
<tr>
<td>Type</td>
<td>Czerny-Turner type</td>
</tr>
<tr>
<td>Focal distance</td>
<td>750 mm</td>
</tr>
<tr>
<td>Grating</td>
<td>Spectrometer 1: 3600 grooves/mm, Spectrometer 2: 1200 grooves/mm</td>
</tr>
<tr>
<td>Slit width</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>Slit height</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>Reciprocal linear dispersion</td>
<td>(1st order) 0.29 nm/mm, 1.06 nm/mm</td>
</tr>
<tr>
<td>Observation height</td>
<td>15 mm above load coil</td>
</tr>
<tr>
<td>Optical path</td>
<td>In air</td>
</tr>
<tr>
<td>Spectral line used/μm</td>
<td>Ball 235.527, CaII 393.366 or CaII 396.847, CuII 324.754, FeII 259.940, RhII 407.771, ZnII 215.856</td>
</tr>
<tr>
<td>Oxygen analyzer</td>
<td>LECO TG-436, Helium</td>
</tr>
<tr>
<td>System operation</td>
<td>6000 W (about 2300°C) 40 s, 4800 W (about 2100°C) 30 s</td>
</tr>
<tr>
<td>Degassing</td>
<td></td>
</tr>
<tr>
<td>Analyzing</td>
<td></td>
</tr>
<tr>
<td>Flux</td>
<td>Nickel capsule 0.5 g, Graphite powder 0.1 g</td>
</tr>
<tr>
<td>Sample weight</td>
<td>2 mg</td>
</tr>
<tr>
<td>Standard sample for calibration</td>
<td>Japan Analyst Co. 991-103 (173 ± 3 μg/g O)</td>
</tr>
<tr>
<td>Carbon analyzer</td>
<td>LECO CS-244, Oxygen</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Induction furnace</td>
</tr>
<tr>
<td>Combustion furnace</td>
<td>18 MHz</td>
</tr>
<tr>
<td>Frequency</td>
<td>2.2 kW</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>System operation</td>
<td></td>
</tr>
<tr>
<td>Purge time</td>
<td>30 s</td>
</tr>
<tr>
<td>Detection time</td>
<td>30 s</td>
</tr>
<tr>
<td>Accelerator</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Tungsten</td>
<td>1.5 g</td>
</tr>
<tr>
<td>Tin</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Sample weight</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Standard sample for calibration</td>
<td>JSS 208-1 (1.03% C)</td>
</tr>
</tbody>
</table>

2 实 験

2.1 装置、試薬及び標準溶液
分析に使用した装置及びその操作条件を Table 1 に示す。
市販の純度 99.9〜99.999% 標準試薬、及び分析用試薬を使用した。
混酸：硝酸 500 ml、塩酸 500 ml と水 1000 ml を混合した。

金属標準溶液：ビスマス (4.50 mg/ml)、鉛 (1.00 mg/ml)、鋼 (2.20 mg/ml)、パナジウム (0.100 mg/ml)及び鉄 (0.150 mg/ml) の各標準溶液を調製するために、各金属をそれぞれ適切な酸で溶解した。カルシウム (1.20 mg/ml)、ストロンチウム (2.00 mg/ml) 及びバリウム (0.0800 mg/ml) の各標準溶液に対しては、110℃で乾燥し恒量とした炭酸塩を必要量採り、それぞれ、混酸で溶解した。イリジウム (0.300 mg/ml)、ルテニウム (0.150 mg/ml) 及びジルコニウム (0.200 mg/ml) の各標準溶液
Table 2 Comparison of analytical results (wt%-%) corrected and not corrected non-spectral interferences for Bi-Pb-Sr-Ca-In-Cu-O system superconductors (n = 3)

<table>
<thead>
<tr>
<th>Analytical element</th>
<th>Sample A</th>
<th>Sample B</th>
<th>Non-spectral interferences factor (f_{corr} n = 2)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>corrected</td>
<td>not corrected</td>
<td>corrected</td>
</tr>
<tr>
<td>In filtrate</td>
<td>34.42 ± 0.07</td>
<td>34.81 ± 0.07</td>
<td>34.54 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.47 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.61 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>7.78 ± 0.035</td>
<td>7.933 ± 0.036</td>
<td>7.734 ± 0.013</td>
</tr>
<tr>
<td></td>
<td>0.05 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0554 ± 0.0016</td>
</tr>
<tr>
<td></td>
<td>0.008 ± 0.000</td>
<td>0.008 ± 0.000</td>
<td>0.008 ± 0.000</td>
</tr>
<tr>
<td>In residue</td>
<td><0.02</td>
<td><0.02</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>0.0012 ± 0.0001</td>
<td>0.0012 ± 0.0001</td>
<td>0.0010 ± 0.0000</td>
</tr>
<tr>
<td></td>
<td><0.07</td>
<td><0.07</td>
<td><0.07</td>
</tr>
<tr>
<td></td>
<td><0.0002</td>
<td><0.0002</td>
<td><0.0002</td>
</tr>
<tr>
<td></td>
<td>0.067 ± 0.001</td>
<td>0.067 ± 0.001</td>
<td>0.071 ± 0.002</td>
</tr>
<tr>
<td>O^2-</td>
<td>100.00 ± 0.12</td>
<td>100.93 ± 0.12</td>
<td>100.06 ± 0.10</td>
</tr>
</tbody>
</table>

a) f_{corr} = (analyte value corrected the fluctuation, impurity in standard reagents and spectral interferences for mixed solution)/(amount of analyte added to the mixed solution)

b) Fusion in helium gas-infrared absorption method
c) Combustion in oxygen gas-infrared absorption method

に対しては、それぞれ、原子吸光分析用標準溶液（1000 μg/l-ml/10 wt% 塩酸溶液、アルドリッチ）、（1000 μg/Ru/ml/5 wt% 塩酸溶液、アルドリッチ）及び（1000 μg/Zr/ml/1 mol/l硝酸溶液、和光純薬）を使用した、試料を混酸で溶解しているので、溶液調製がしやすいように、標準溶液には混酸が適量存続するようにした。
亜鉛内標準溶液（5及10 mg/ml）、亜鉛5あるいは10 gを、それぞれ、硝酸（1:1）50 mlあるいは100 mlで溶解し、水で100 mlに希釈した。

2.2 試料溶解及び測定法
Bi-Pb-Sr-Ca-In-Cu-O系超伝導体：試料100 mgを混酸40 mlで溶解し、亜鉛内標準溶液（10 mg/ml）10 mlを正確に加え、沸過（沸壷No.3C）し、硝酸：塩酸：水=5:3:6で洗浄する。沸過水は100 mlに希釈した後、ICP-OESで測定する。残留物はジルコニアにぶつけて蒸着に灰化し、酸化ナトリウム0.7 gと過酸化ナトリウム1.4 gを加えて、溶融する。放冷後、つぼをピッカに入れて、混酸40 mlで溶出後、直ちにつぼをとり出し、洗浄する。その溶液を加熱してジルコニア酸化物を溶解するとともに生成した過酸化水素を分解する。亜鉛内標準溶液（5 mg/ml）10 mlを正確に加え、加熱濃縮して約80 mlとし、メスフラスコに移し、水で100 mlに希釈した後、ICP-OESで測定する。
他のビスマス系酸化物超伝導体：試料100 mgを混酸40 mlで溶解し、亜鉛内標準溶液（10 mg/ml）10 mlを正確に加え、水で100 mlに希釈した後、ICP-OESで測定する。

3 結果と考察
ICP-OESでは、誤差の原因となる分光干渉及び非分光干渉（物理干渉、化学干渉、イオン干渉及び励起干渉）が大きな問題である。しかしこれらの干渉は、アルゴンガス流量、高周波出力や測定位置などにより変動する。非分光干渉は、共存元素の種類とその量によって変動する。それ故に、測定線の選択、検量線溶液の調製、及び補正計算方法が重要である。
測定線の選択は、分光干渉による誤差をできるだけ避けするために、実験的に求めた元素相互の分光干渉率のデータで行った。また、試料測定時に分光干渉を確認し、無視できないときにはそれを補正した。
マトリックスマッティングを行った検量線溶液の調製は、二元系の試料で、かつ不純物を含まない標準試薬が入手できれば、容易に行うことができる。しかし、三元系以上の試料の場合、より正確な分析結果を得るためにマトリックスマッティングを行って検量線溶液を調製することは容易ではない。それ故に、単一元素で検量線溶液を調製し、逐次
補正計算法により分析結果を得ることとした．

逐次補正計算法とは、測定値の経時変化、標準試薬中の不純物、分光干涉、非分光干涉及び空試験値の補正を順次行う方法である。測定値の経時変化の補正是、試料溶液2個測定することにより、検量線作成用溶液の中で一日高濃度の溶液を測定して行った。分光干涉、非分光干涉の補正のため使用した標準試薬中の不純物が多く無視できないとき、不純物含有の影響を補正した、分光干涉に関しては、例えば同一種類のネプライザーでも、ネプライザーの状態や分析条件に応じて水の吸い上げ量が若干異なり、それがプラズマの励起温度を変化させることにより、特に原子線とイオン線の強度比が変化するために、分光干涉率も若干変化する。それ故、一定の測定を行う度に単一元素の溶液で測定して分光干涉を確認し、無視できないものと補正した。非分光干涉に関しては、例えばほほぼら隠れエネルギーの測定値と標準線を用いることは、日常分析では不可能に近いため、測定値と標準線の強度変化は必ずしも同じではなく、このため内標準法により完全に補正することはできない、それ故、試料溶液を測定して、分光干渉までを補正して得た定量元素の値を、分光干涉係数をもって補正した。

Table 3 は、Bismuth系酸化物超伝導体の分析結果である。各元素の合計がほぼ100％となっており、逐次補正計算法により、良い結果が得られることが示されている。

結論として、ICP-OESにおいて、適切な測定線を選択し、単一元素の溶液で検量線を作成して、測定値の経時変化、標準試薬中の不純物、分光干涉、非分光干涉及び空試験値の補正を順次行う逐次補正計算法により、ビスマス系酸化物超伝導体試料を良好に分析できた。

本報告に対して御指導いただいた金属材料研究所高田二雄講師及び我妻和明教授に深く感謝致します。分析試料を提供された前田・弘教授にお礼申し上げます。

文 献
5) Y. Z. Zhao: Fench Shiyanshi, 12 (6), 67 (1993).