Determination of alklyphenols by GC/negative-ion chemical-ionization MS

Sadao Nakamura, Masahiko Takino* and Shigei Daishima**

*Kansai branch office, Yokogawa Analytical Systems Inc., 3-3-11, Nii-taka, Yodogawa-ku, Osaka 532-0033
**Yokogawa Analytical Systems Inc., 2-11-13, Nakacho, Musashino-shi, Tokyo 180-0006

(Received 14 January 2000, Accepted 22 February 2000)

An analytical method for the determination of potential endocrine disruptors, seven alklyphenols including nonylphenol and 4-ct-octlyphenol, by gas chromatography/mass spectrometry (GC/MS) with negative-ion chemical-ionization (NICI) has been developed. First, the detection limits by GC/MS-SIM with electron ionization (EI) and NICI were compared for the derivatized and pentafluorobenzyl (PFB) derivatives of alklyphenols. The NICI-SIM of PFB derivatives used an (M-PFB)+ ion as the monitoring ion. The reagent gas (methane) flow rate and the ion-source temperature were determined to be 2.5 ml/min and 250°C, respectively, for the optimized NICI-SIM conditions. In the case of EI-SIM, the sensitivities of PFB derivatives were 2.1 to 6.3 times higher than those of undervatized target chemicals. Furthermore, the sensitivities of PFB derivatives by NICI-SIM were 67 to 300 times higher than those of undervatized target chemicals by EI-SIM. The detection limits by NICI-SIM ranged from 1.0 pg/ml to 33 pg/ml. This method also provides good linearity of the calibration curve and repeatability. The correlation coefficients of calibration curve were > 0.9995 for all chemicals in the concentration range from 1 pg/ml to 10 ng/ml. The relative standard deviations of the peak areas of the target chemicals were 3.6 to 6.8% for 10 pg/ml, 2.3 to 4.9% for 100 pg/ml, and 2.4 to 3.5% for 1000 pg/ml. The recoveries of the target chemicals from a river-water sample spiked with standards at 10 pg/ml levels for 4-n-pentlyphenol, 4-n-hexlyphenol, 4-n-heptylphenol and 4-n-octlyphenol, 100 pg/ml levels for 4-ct-butlyphenol and 4-ct-octlyphenol, and 5000 pg/ml levels for nonylphenol were 77.9 to 102%. The relative standard deviations were to be from 4.1 to 12%.

Keywords: alklyphenols; GC/MS with negative-ion chemical-ionization; derivatization with pentafluorobenzyl bromide; endocrine disruptors; solid-phase extraction.

1 緒 言
人間は数多くの化学物質を合成し、あるいは分離を行い、単離してきた。これらのうちで、商業的に利用されている化学物質は相当数に上り、著者らの生活の中で不可欠なものとなっている。しかし、一方ではこれらの化学物質のうち幾つかは、動物体内的正常なホルモン作用を操乱し、生殖機能を阻害する可能性があるという指摘がなされ、社会的な関心を集めている。このような内分泌乱作作用が疑わされる化学物質は、外因性内分泌乱作物質（環境ホルモン）と呼ばれ、環境庁は1998年5月に環境ホルモンに関する対策を発表している1。これらの環境ホルモンは、67物質（群）に上がており、環境中の存在量や動態を明らかにするには極めて低いレベルまで効率的に定量することが求められる。したがって、分析法として電子イオン化
Table 1 Operating conditions for GC/MS

<table>
<thead>
<tr>
<th>GC (HP6890)</th>
<th>MS (HP5973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Ionization mode</td>
</tr>
<tr>
<td>HP-5MS, 30 m × 0.25 mm id × 0.05 μm film thickness</td>
<td>CI negative</td>
</tr>
<tr>
<td>Column temperature</td>
<td>Reagent gas</td>
</tr>
<tr>
<td>90°C (1.5 min) → 20°C (0 min) → 180°C (0 min) → 8°C/min → 280°C (5 min)</td>
<td>Methane</td>
</tr>
<tr>
<td>Injection volume</td>
<td>Reagent gas flow rate</td>
</tr>
<tr>
<td>pulsed splitless (250°C), 296.8 kPa (1.1 min), purge off time: 1 min</td>
<td>2.5 mL/min</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Ion source temperature</td>
</tr>
<tr>
<td>Helium (1.2 mL/min, constant flow mode)</td>
<td>250°C</td>
</tr>
<tr>
<td>Interface temperature</td>
<td>SIM monitoring ion</td>
</tr>
<tr>
<td>280°C</td>
<td>4-tert-Butylphenol (m/z 149, 150)</td>
</tr>
<tr>
<td></td>
<td>4-n-Butylphenol (m/z 165, 164)</td>
</tr>
<tr>
<td></td>
<td>4-n-Octylphenol (m/z 191, 192)</td>
</tr>
<tr>
<td></td>
<td>Nonylphenol (m/z 219, 220)</td>
</tr>
<tr>
<td></td>
<td>4-n-Octylphenol (m/z 205, 206)</td>
</tr>
</tbody>
</table>

（EI）法を用いたガスクロマトラグラフィー/質量分析法（GC/MS）による多成分一斉分析法が基本となっている。環境ホルモンの中で、アルキルフェノール類は直接環境中に排出されているだけでなく、非イオン性界面活性剤であるアルキルフェノールエトキシレートの分解からでも生ずるため、アルキルフェノール類の環境中での挙動を明らかにすることができる重要である。一般的に、これらのアルキルフェノール類の分析法には、固相抽出などで100倍濃縮を行い、誘導体化せずにGC/MSで定量する方法があるが、GC/MSの検出限界は水質試料で10 pg/mL（混合物であるフェノール類は100 pg/mL）である。また、参考として、エチル誘導体化法が挙げられているが、この場合も固相抽出などで1000倍濃縮後、エチル誘導体としてからGC/MSで定量を行うが、検出限界については誘導体化しない場合と同一となっている。一方、イオン化法として電子捕獲型の反応を利用する負イオン化学イオン化（NICI）法では、電子親和性の高い化合物に対して、高感度、高選択性の検出が期待できる。また、電子親和性の低い化合物であってもフェノール性水酸基のような活性基を有する化合物の場合は、誘導体化により電子親和性を高めてからNICI法で測定することが可能であり、この目的のためにペンタフルオロペンゼン（PFB）誘導体などが利用されている。このPFB誘導体は、NICIを用いたGC/MS法に対して極めて有用であるとともに、EI法においても分子イオンが大きく出現することが予想されるため、GC/MSによる選択オートイオン発生法（SIM）での高感度分析が期待できる。

しかし、NICI法を用いたアルキルフェノール類の測定については、1種の化合物を測定するための分析法が報告されているが、7種のアルキルフェノール類を一斉に測定した報告はない。そこで本研究では、7種のアルキルフェノール類について、PFB誘導体化後NICI法を適用する方法について検討を行い、GC/NCI-MSによるアルキルフェノール類の高感度一斉分析法を確立した。更に、今回確立した分析法の有効性を確認するため、河川水の適用を図ったので報告する。

2 実 験

2.1 試 薬

ジクロロメタン、アセトン、ヘキサンは、和光純薬製の残留農薬試験用を用いた。1 M塩酸は和光純薬製の定量分析用を用いた。実験に使用したアルキルフェノール類の標準品は、4-メチルフェノール、4-ペンチルフェノール、4-ヘキシルフェノール、4-オクチルフェノール、4-ペプチルフェノール、ノニルフェノール（ノニル基が枝分かれした混合物）、4-オクチルフェノールの7種で、いずれも和光純薬製を用いた。これらの標準品をそれぞれジクロロメタンに溶解し、1.0 mg/mLの標準原液を調製した。各標準原液を更にジクロロメタンで希釈して混合し、各標準品の濃度が10 μg/mLの混合標準液を調製し、適宜希釈して使用した。

無水炭酸カリウムは和光純薬製を用い、2 gを精製水20 mLに溶解し10%の水溶液を調製した。ベンタフルオロペンゼン（PFBBr）は、ジーゼルサイエンス製を用い、0.25 gをアセトン5 mLに溶解したものを作製して、固相抽出に使用、3M製エムボアディスク SDB-XD（直径47 mm、膜厚0.5 mm）を使用した。

2.2 試料前処理法

2.2.1 固相抽出条件 河川水（大阪市神崎川で採取）
2.2.2 誘導体化条件

誘導体化は、2.2.1で調製した溶液のうち1 mlを2 mlガラスバイアルに移し、10%無水炭酸カリウム水中溶液100 μl及び5% PFBrアセトン溶液100 μlを加え、60℃で1時間反応させPB誘導体とした。この反応液に窒素ガスを吹き付けて約100 μlまで濃縮し、ヘキサン1 ml及び精製水0.5 mlを加え、十分振り混ぜ静置後、有機相2 μlをGC/MSに注入した。

2.3 装置及び測定条件

測定には、CIイオン源を装着したHewlett Packard製6890/5973 GC/MSを使用した。キャビリーカラムには、同社製HP-5MS（30 m、0.25 mm、0.25 μm）を使用した。GC/MSによる測定条件はTable 1に示した。CIの試薬ガスは、メタンを用いた。質量スペクトルの測定は、全イオン検出法（TIC、測定質量範囲：m/z = 10 〜 500、走査速度：1.55 scans/s）で行い、定量化にはSIM（ホールド時間：40 〜 150 ms）を用いた。Table 1に定量に用いた各検測成分の設定m/z値を示した。
2.4 検量線の作成
2.1の10 μg/mlの混合標準溶液をアセトンで希釈し、1, 2, 5, 10, 20, 50, 100, 500, 1000および10000 μg/mlの溶液を調製した。各濃度溶液1 mlについて、2.2.2に示した方法によりPFB誘導体とし、有機相2 mlをGC/MSに注入した。SIMにより(M-PFB)⁻に相当するm/zをモニターし、得られたSIMクロマトグラムからピーク面積を求める、絶対検量線法により検量線を作成した。混合物であるのームフェノールについては、代表的な一つのピークの面積を求め検量線を作成した。

3 結果と考察
3.1 PFB誘導体化
著者らが、クロロフェノール類などに対してPFB化を行ったものを用いて、アルキルフェノール類について同様に誘導体化を行った。誘導体化の反応効率を確認するため、各標準物の濃度が10 μg/mlの混合標準溶液1 mlを用いて誘導体化し、未反応物質の有無をGC/ESMSを用いるTIMで測定を行った。その場合、未反応物質の抽出は、フェノール性化合物の解離を抑えるため1 M塩酸でpHを2〜3に調整後、ジクロロメタンで行った。その結果、未反応物質はいずれのアルキルフェノールにおいても検出限界以下（<0.005 μg/ml、ノニルフェノールは<0.05 μg/ml）であり、ほぼ完全に誘導体化したものと考えられる。

3.2 EI法及びNICI法による測定
3.2.1 質量スペクトルの比較 アルキルフェノール類をEI法で測定した質量スペクトルと、2.2.2で示した方法によりPFB誘導体化後EI法及びNICI法で測定した質量スペクトルをFig. 1に示した。誘導体化せず測定したEI法の質量スペクトルでは、C₈H₇(OH)CH₃⁺（m/z = 107）あるいはC₆H₅(OH)(CH₃)₂⁺（m/z = 135）がベースピークであり、全化合物ともイオン強度は弱いながら分子イオンピーク（M⁺）が観察された。PFB誘導体のEI法の質量スペクトルは、誘導体化剤由来のPFB⁺（m/z = 181）あるいはC₆H₅(OPFB)(CH₃)₂⁺（m/z = 315）がベースピークを与え、全化合物ともM⁺が観察されたが、アルキル基が直鎖でないもの（4-tert-butylフェノール、4-tert-oクチルフェノール）はそのイオン強度が低かった。ノニルフェノールでは異性体間でスペクトルパターンが異なり、上記に示したスペクトルパターンでないものも認められた。一方、PFB誘導体のNICI法の質量スペクトルは、全化合物で解離型共鳴捕獲反応により生成した（M−PFB)⁻がベースピークとなり、他のフラグメントイオンはほとんど観察されなかった。このように、PFB誘導体とすることでEI法では非誘導体のM⁺より高質量側に強いイオン強度を持つイオンピークが出現し、またNICI法では（M−PFB)⁻イオンピークのみが出現した。したがって、非誘導体のEI法と比較すると、PFB誘導体のEI法及びNICI法はどちらもアルキルフェノール類の定量に極めて有効である。

3.2.2 NICI法での最適イオン化条件の検討 試製ガス流量のイオン生成量に及ぼす影響について、混合標準溶液（100 μg/ml）のPFB誘導体を用いて、1.0〜3.5 ml/min（イオン源温度は150℃一定）で検討を行った。なお、各アルキルフェノールのSIMモニターイオンにはTable 1に示すm/z値を用いた。その結果、全化合物とも流量2.5

Fig. 2 Effect of reagent gas flow rate (left) and ion source temperature (right) on ion abundance
■: 4-t-butylphenol (m/z 149); □: 4-n-pentylphenol (m/z 163); ▲: 4-n-hexylphenol (m/z 177); △: 4-octylphenol (m/z 205); ●: 4-n-heptylphenol (m/z 191); ○: nonylphenol (m/z 219); ×: 4-n-octylphenol (m/z 205)
ml/minにおいて、イオン生成量（ピーク面積）が最大となり、流量依存性があることが認められた（Fig. 2）。同様に、イオン源温度のイオン生成量に及ぼす影響について、混合標準溶液（100 pg/ml）のPFB誘導体を用いて150〜270℃（試薬ガス流量は2.5 ml/min一定）で検討を行った。その結果、全化合物とも顕著ではないものの250℃まではイオン源温度の増加に伴いイオン生成量（ピーク面積）の増加が見られ、温度依存性があることが認められた（Fig. 2）。270℃では、250℃とはほぼ同じイオン生成量であった。以上の検討の結果より、試薬ガス流量は2.5 ml/min、イオン源温度は250℃として測定を行うこととした。

3.2.3 SIM法による測定 SIMモニターイオンとしては、誘導体化せずEI法による測定では全化合物も含めそれぞれのベースピークとした。PFB誘導体のEI法による測定では、PFB⁺を除きイオン強度の一番強いピークあるいはM⁺とした。PFB誘導体のNICI法による測定では、各化合物ともベースピークの(M−PFB)⁻とした（Table 1）。

検出限界（S/N=3）について、上記の三通りの測定法

Table 2 Comparison of detection limits (at S/N=3) among three analytical conditions

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Underivatized alkylphenols</th>
<th>PFB derivatives of alkylphenols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EI-SIM</td>
<td>EI-SIM</td>
</tr>
<tr>
<td>4-tert-Butylphenol</td>
<td>190</td>
<td>50</td>
</tr>
<tr>
<td>4-α-Pentylphenol</td>
<td>300</td>
<td>80</td>
</tr>
<tr>
<td>4-α-Hexylphenol</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>4-α-Octylphenol</td>
<td>250</td>
<td>40</td>
</tr>
<tr>
<td>4-α-Heptylphenol</td>
<td>420</td>
<td>110</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>2200</td>
<td>1020</td>
</tr>
<tr>
<td>4-α-Octyloxyphenol</td>
<td>390</td>
<td>180</td>
</tr>
</tbody>
</table>

a) three times of the standard deviation (n=6) of blank test unit: pg/ml; injection volume: 2 μl

Fig. 3 NICI-SIM chromatograms of PFB derivatives of alkylphenols
(a): 4-α-butyphenol (20 pg/ml); (b): 4-α-pentylphenol (5 pg/ml); (c): 4-α-hexylphenol (5 pg/ml); (d): 4-α-octylphenol (20 pg/ml); (e): 4-α-heptylphenol (5 pg/ml); (f): nonylphenol (100 pg/ml); (g): 4-α-octyloxyphenol (5 pg/ml). Injection volume: 2 μl
で比較を行い、その結果を Table 2 に示した。EI 法では、アルキルフェノール類を PFB 誘導体とするとき、SIM でのモニターイオンが m/z 値で 180 ～ 279 増加し、その結果 2.1 ～ 6.3 倍の感度があることが分かった。更に、これら PFB 誘導体を NICI 法で測定すると、誘導体化せず EI 法により測定した場合より 67 ～ 300 倍の感度があることが分かった。しかし、NICI 法では空試験で 4-t-ブチルフェノール、4-t-オクチルフェノール、4-ヘプチルフェノール及びノニルフェノールが検出されたため、これらの 4 化合物については空試験値の標準偏差（n = 6）の 3 倍を検出限界とした。Fig. 3 に、混合標準溶液各 5 pg/ml（4-t-ブチルフェノール及び 4-t-オクチルフェノールは 20 pg/ml、ノニルフェノールは 100 pg/ml）を用いて PFB 誘導体の NICI 法で測定した SIM クロマトグラムを示した。PFB 誘導体の NICI 法については、直線性と繰り返し再現性の結果を Table 3 に示した。混合標準溶液を用いて 1 pg/ml ～ 10 ng/ml の範囲で、各濃度溶液についてそれぞれ誘導体化後、SIM 測定を行い検量線の作成を行うと、いずれも相関係数 0.9995 以上と良好な直線性が得られた。また、混合標準溶液各 10, 100, 1000 pg/ml について、

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Correlation coefficient</th>
<th>RSD, % at 10 pg/ml</th>
<th>RSD, % at 100 pg/ml</th>
<th>RSD, % at 1 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-t-Butylphenol</td>
<td>1.000</td>
<td>5.0</td>
<td>4.9</td>
<td>2.7</td>
</tr>
<tr>
<td>4-n-Propylphenol</td>
<td>1.000</td>
<td>5.9</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>4-n-Hexylphenol</td>
<td>1.000</td>
<td>6.8</td>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>4-t-Octylphenol</td>
<td>1.000</td>
<td>3.9</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>4-n-Hexylphenol</td>
<td>1.000</td>
<td>3.6</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>1.000</td>
<td>4.8</td>
<td>4.6</td>
<td>3.5</td>
</tr>
<tr>
<td>4-n-Octylphenol</td>
<td>1.000</td>
<td>5.2</td>
<td>2.3</td>
<td>2.9</td>
</tr>
</tbody>
</table>

a) concentration range: 1 pg/ml - 10 ng/ml

Fig. 4 NICI-SIM chromatograms of PFB derivatives of alkyphenols extracted from (A) the river water spiked with standards and from (B) the river water non-spiked

(a): 4-t-butylphenol; (b): 4-n-pentyphenol; (c): 4-n-hexylphenol; (d): 4-t-octylphenol; (e): 4-n-heptylphenol; (f): nonylphenol; (g): 4-n-octylphenol
ビーグ面積を測定し繰り返し再現性（n = 6）を求めると、相対標準偏差（RSD）でそれぞれ3.6〜6.8、2.3〜4.9、2.4〜3.5%であった。

3.3 河川水での添加回収実験

3.3.1 マトリックスによる妨害 河川水のマトリッ
クスの影響を検討するため、河川水を2・2.1で示した固
相抽出法で処理を行い、溶出液1mlに標準品を添加し
（添加量は4-n-ペンチュルフェノール、4-n-ヘキシルフェノ
ール、4-n-ヘプチルフェノール及び4-n-オクチルフェノー
ールは0.25ng、4-イソプチルフェノール及び4-n-オクチルフェ
ノールは2.5ng、ノニルフェノールは125ng:河川水濃度
で換算すると5〜2500pg/ml）試料抽出液とした。標
準品を添加した試料抽出液及び添加していない試料抽出液
について、本操作法による分析を行った。標準品を添加し
ていない試料抽出液からは4-n-ヘプチルフェノール、4-n-
オクチルフェノール及びノニルフェノールは検出されたが、
5化合物ともほとんどマトリックスの妨害がなく定量可能
であった。4-n-ヘキシルフェノール、4-n-ヘプチルフェノ
ール及び4-n-オクチルフェノールについては、ほとんどマ
トリックスの妨害がなかった。4-n-ベンチュルフェノールは
かなり妨害が認められたが、河川水濃度で5pg/ml程度
であれば定量可能であった。Fig. 4に、その結果のSIM
クロマトグラムを示した。

3.3.2 添加回収実験 添加回収実験には、河川水
100ml中にTable 4に示した量の標準品を添加し、試料
溶液（各標準品について：10〜5000pg/ml）とした。こ
の試料溶液を固相抽出法にて処理を行い、次いで誘導体化
を行った。また、固相抽出法にて同様の処理を行った河川
水に同一濃度となるように標準品を添加し、誘導体化を行
った。両者についてNICI-SIMにより各化合物のビーグ面
積を比較し、回収率及び繰り返し再現性を求めた。その結
果を、Table 4に示した。回収率は77.9〜101.5%であり、
繰り返し再現性（n = 5）はRSDで4.1〜12.1%であっ
た。

以上、本研究においてGC/MSによるアルキルフェノー
ル類の分析法の検討を行った結果、NICI法がEI法に比較
して感度が優れており、PFB誘導体のNICI法は誘導体化
せずにEI法により測定した場合より67〜300倍、PFB誘導
体化後EI法により測定した場合より23〜85倍高感度で
あることが判明した。更に、PFB誘導体のNICI法は河川
水において良好な回収率と繰り返し再現性を示し、また
50倍程度あるいはそれ以下の濃縮を行うことで、数pg/
ml（ppt）の濃度レベルであればマトリックスによる妨害
もほとんどなく十分測定が可能であり実用性が高いことが
分かった。これらのことから、本法は河川水などの環境試
料中の微量アルキルフェノール類の高感度測定法になりう
るものと期待できる。

文献

1) 外因性内分泌機能異常の環境汚染物質への影響の対応方策
について、(1998)。
2) 第26回日本環境学会講演会予稿集、p.9 (1998)。
8) 滝澤昌彦，山下 仰，代島茂樹: 分析化学 (Bunseki Kagaku), 45, 559 (1996)。
10) 中村真夫，濁澤昌彦，代島茂樹: 分析化学 (Bunseki Kagaku), 49, 181 (2000)。

Table 4 Recovery (%) of alkylphenols from river water and repeatability (n = 5)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Monitoring ion m/z</th>
<th>Spiked amount/ ng</th>
<th>Recovery, % (RSD, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-n-Butylphenol</td>
<td>149</td>
<td>10</td>
<td>97.3 (4.3)</td>
</tr>
<tr>
<td>4-n-Pentylphenol</td>
<td>163</td>
<td>1</td>
<td>101.5 (12.4)</td>
</tr>
<tr>
<td>4-n-Hexylphenol</td>
<td>177</td>
<td>1</td>
<td>94.4 (4.1)</td>
</tr>
<tr>
<td>4-n-Octylphenol</td>
<td>205</td>
<td>10</td>
<td>92.6 (4.7)</td>
</tr>
<tr>
<td>4-n-Heptylphenol</td>
<td>191</td>
<td>1</td>
<td>93.4 (5.4)</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>219</td>
<td>500</td>
<td>77.9 (5.1)</td>
</tr>
<tr>
<td>4-n-Octylophenol</td>
<td>205</td>
<td>1</td>
<td>78.0 (9.6)</td>
</tr>
</tbody>
</table>

river water: 100 ml
要 旨

外因性内分泌機能異常として疑われているアルキルフェノール類7種について、ベンタフルオロベンジル（PFB）誘導体とし負イオン化学イオン化（NICI）法を用いるガスクロマトグラフィー/質量分析法（GC/MS）による分析法を確立した。まず、アルキルフェノール類及びそのPFB誘導体について、電子イオン化（EI）法及びNICI法を用いる選択イオン検出法（SIM）により検出限界の比較を行った。PFB誘導体のNICI-SIM法ではモニターイオンとして各化合物のベースピークである（M-PFB）イオンを用い、また試薬ガス（メタン）流量及びイオン源温度の最適条件を検討し、それぞれ2.5ml/min及び250℃とした。EI-SIM法では、PFB誘導体とすることで誘導体化せずに測定した場合より2.1〜6.3倍の感度を示し、更にPFB誘導体のNICI-SIM法では67〜300倍もの高い感度を示した。NICI-SIM法による各アルキルフェノール類の検出限界は1.0〜33pg/mlであった。検量線の直線性は1pg/ml〜10ng/mlの範囲で、いずれの化合物も相関係数0.9995以上であった。また、繰り返し再現性（相対標準偏差，n=6）は、濃度10, 100, 1000pg/mlでそれぞれ3.6〜6.8, 2.3〜4.9, 2.4〜3.5%であった。更に、汚水100mlに4-n-ベンチルフェノール，4-n-ヘキシルフェノール，4-n-ヘプチルフェノール及び4-n-オクチルフェノール各1ng, 4-ブチルフェノール及び4-オクチルフェノールは10ng、モノフェノール（混合物）は500ngを添加し、本法で得られた回収率は77.9〜102%であり、また繰り返し再現性（n=5）は相対標準偏差で4.1〜12%であり，いずれも良好な結果を示した。