Recognition, separation and concentration of metal ions with chelating resins or chelating reagent impregnated resins (Review)

Hideyuki MATSUNAGA*

*Tohoku National Industrial Research Institute, 4-2-1, Nigatake, Miyagino-ku, Sendai 983-8551
(Received 12 May 2000)

The history of studies on the recognition, separation and concentration of metal ions with chelating resins or chelating reagent impregnated resins (RIR) has been briefly surveyed with 195 references. Both types of chelating resins have been extensively studied in order to develop highly effective separation and detection methods for various metal ions. In this review, the preparation and adsorption mechanisms are mainly summarized. Especially, a method called “Molecular Imprinting” has recently been developed to make new types of chelating resins having high selectivity for specific metal ions. It is shown that chelating resins synthesized based on this idea have high selectivity for imprinted metal ions. The adsorption of metal ions with RIR has attracted considerable attention since it was introduced, because of its advantage of easy preparation. Adsorption mechanisms have recently been studied for various types of RIR. It has been suggested that different preparation methods for RIR give different adsorption mechanisms. Thus, information on the physical state of the reagent impregnated in the resin particles should also be very important to prepare efficient RIR. The separation and concentration of metal ions with these solid materials are expected to be highlighted in the 21st century, since they can provide simple and clean separation technologies that cause few environmental problems.

Keyword: chelating resin; chelating reagent impregnated resin; metal ions; recognition; separation and concentration.
すことはよく知られている[1]。一方、これに対して、高分子合成化学の進展と有機化合物の多様性を反映して、様々な化学構造を持つ有機系イオン交換体が開発され、実際に応用されるようなことがでた。有機系材料は、耐熱性の点では無機系材料に劣るが、一般に耐酸・耐アルカリ性に優れ、様々な用途に適用できる。その代表例の存在であるイオン交換樹脂は、多種類のイオンを同時に吸着することが必要な場合、例えば超純水の製造など、において威力を発揮してきた。しかし、ある種の金属錯元群のような価数やサイズが似たようなイオンどうしを分離するのは、基本的であると問題が和があった。これは、イオン交換樹脂が主として単純な電荷相互作用に基づきイオンを取り込むことに起因している。そこで、錯形成反応に対する分解、特に固定イオンを有するイオン交換樹脂が、特徴的な選択性を持つ分離材料として登場してきた。特に、実用上共存するイオン交換樹脂が同時に取り扱うことのできる、イオン交換樹脂交換樹脂の開発となりそしてイオン交換樹脂が提案され、化学結合を介さずにイオン交換樹脂を担体内に含む樹脂を製造できるだけに適した利点が多く、多くの興味深い含水樹脂を生み出している。

2 共有結合型イオン交換樹脂

2.1 共有結合型イオン交換樹脂の多様性

いわゆるイオン交換樹脂と呼ぶ場合、これは錶化基が共有結合により製成物をつとめず止められているものを指す。この観点の共有結合型のイオン交換樹脂、イオン交換樹脂の金属イオンに対する選択性を高める目的で開発され、その基本的な考え方は、イオン交換樹脂のイオン交換基を、金属イオンと共存イオンに錯形成するイオン交換樹脂に置き換えることである。確かに、その考え方に沿って、イオン交換樹脂をしの選択性を示すいくつかのイオン交換樹脂が開発されてきた[6,7]。しかし、合成上の制約から、イオン交換樹脂を自由に扱えるというわけではなく、したがって、単純にイオン交換の数だけの多種多様なイオン交換樹脂が存在するものでもないことは止むをえないところである。この点が、共有結合型イオン交換樹脂の特徴の最大の難点でもある。それでも後述のように、選択性の分離材料としてのイオン交換樹脂の利便性は魅力的な背骨であるところから、合成技術の改良とともに初期のイミノニ二酸塩型の改良や、新しい合成法で開発されるイオン交換樹脂の種類は、かなり多様性にあるようである。Table 1に、最近報告されているイオン交換樹脂におけるイオン交換樹脂をまとめた。

Table 1からわかるように、イオン交換樹脂の種類は、負荷イオンの種類に応じて選択性が異なり、様々なイオン交換樹脂の種類を有している。例えば、イオン交換樹脂の開発は、特定の金属錯体の形成による金属イオン選択性の向上を目指す基本的なアプローチであり、開発の王道であろう。しかし、複雑な金属イオンを持つイオン交換樹脂は、有機合成の進歩を裏書きし、手続とコストがかかる要所を持った開発である。そこで、できるだけ簡単に、あるイオン交換樹脂の開発の例を示すと、後述するようにイオン交換樹脂の種類や、イオン交換樹脂の基の立体的な配置を考慮した材料設計が行われている。
Table 1 Chelating moieties in the recent chelating resins

<table>
<thead>
<tr>
<th>Coordination mode</th>
<th>Chelating moieties</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O,O-</td>
<td>Acrylic dibenzopolyethers</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Alizarin red S</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Arsenazo I</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Tannin</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Nitroso R salt</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Ethyleneglycol</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Pseudo crown ether</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>p-tolyl-Butylcalix[8]arene</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Salicylic acid</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Chromototropic acid</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Ethylenediamin(oxy-phenoxo) diacetic acid</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4-(2-Thiazolylazo)resorcinol</td>
<td>191, 132, 133</td>
</tr>
<tr>
<td></td>
<td>8-Quinolinol</td>
<td>73, 134, 135</td>
</tr>
<tr>
<td></td>
<td>α-Nitro-β-naphthol</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Amidoxime</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Nitrotriacectate</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Aminophosphonic acid</td>
<td>138, 139</td>
</tr>
<tr>
<td></td>
<td>bis(N,N-Salicyldiene)-1,3-propanediamine</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Diethanolamine</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Diethylentriamine pentaaetic acid</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Hydroxamic acid</td>
<td>143, 146</td>
</tr>
<tr>
<td></td>
<td>Methylaminogluitol</td>
<td>147, 148</td>
</tr>
<tr>
<td></td>
<td>N-Benzoyl-N-phenyloxirradiamine</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>N-Hydroxyethylhexylenediamine</td>
<td>150, 151</td>
</tr>
<tr>
<td></td>
<td>N-Hydroxyethylacrylamide</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>N,N-bis(Carbosymethyl)allylamine</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Salicylaldoxime</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Thiazolylazo phenol</td>
<td>155, 156</td>
</tr>
<tr>
<td></td>
<td>Hydrazone</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>t-Amino-3,5-methyl-1,2,4-triazole</td>
<td>158</td>
</tr>
<tr>
<td>N,N-</td>
<td>1-(Di-2-pyridyl) methylene thiocarbonohydrazide</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>2-Aminothiazole</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Dithiazine</td>
<td>161, 163</td>
</tr>
<tr>
<td></td>
<td>N,N-Diethyldiamino-2,3-epithiopropane</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>α-Vaniline thiosemicarbazone</td>
<td>165, 166</td>
</tr>
<tr>
<td></td>
<td>Thioacetamide</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Thiocyanate</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Dithiocarbamate</td>
<td>169, 170</td>
</tr>
</tbody>
</table>

さて、キレート樹脂を合成の観点から眺めてみると、その手法は大別して、キレート生成能を有するモノマーを重合する方法と、あらかじめ構造の決まっている高分子樹脂骨格へキレート性官能基を導入する方法の2種類が採用されており、前者は樹脂骨格の物理的構造をコントロールしがたい反面、骨格の化学構造には変化を持たせることができ、また後述するテンプレート合成を適用しやすい利点がある。一方者方は分離プロセスに適合しやすく、かつ物理構造特性の明確な樹脂を選んで利用でき、また導入するキレート形成基の種類にも工夫を凝らしやすい利点があるものの、キレート形成基の導入量が制限されるなどの欠点を併せ持つ。しかし、いずれの場合にも共通する合成上の問題点は、導入するキレート基の構造を注意深く設計しなければ、樹脂中のキレート形成基の構造がどれも同じ形で導入されることは限らないことである。仮に高分子逐次反応でジエチレントリアミン配位子をクロロメチルポリオキシレーンへ導入しようとした場合、その一級アミノ基、二級アミノ基のいずれからとも導入される可能性がある。また、2個の一級アミノ基による架橋も起こるであろう。このような場合、導入後のキレート形成基は、多様な構造形態をとるため明確な分離機能を引き出すことが困難になる。

現状配位子型キレート樹脂は、多座配位子型と同様に、溶液中と類似した錯形成環境を構築しやすいキレート樹脂一つとして期待できる。キレート形成モノマーの重合による合成法の長所を生かして、幾つかの現状配位子あるいは環状配位子を含むキレート樹脂が合成されている。Gaoら25）は、1,3,5-trioxepaneなどを出発物質としてトリエタノールアミンを架橋剤にし、アミクラウンあるいはアミクラウンを含むキレート樹脂の合成を試みている。その結果、これらの樹脂は特に貴金属イオンに対する選択性が高いと報告している。しかし、この場合には特に単一構造のキレート形成基を得る努力はされていないため、様々な形態でキレート形成基が導入された結果、十分な性能が発揮されるまでには至っていない。Hayashita
2-3 共有結合型キレート樹脂の高機能化

キレート高分子の再構成によるキレート樹脂の合成

1) キレート性官能基を有する多量化合物を基体化する方法で、基体化率が90%以上に達する。2) 基体化率が高いことから、キレート樹脂の特徴を発揮することが可能である。3) 基体化率が90%以上に達する。4) 基体化率が90%以上に達する。5) 基体化率が90%以上に達する。
Fig. 1 Synthesis of metal ion-imprinted microspheres
(Reproduced from ref. 33: Bull. Chem. Soc. Jpn., 68, 3095(1995) with permission from the Chemical Society of Japan)

しようとする場合、三次元的な立体構造にわずかずるさを示さない金属イオンを対象とするテンプレート合成の難しさを示している。一方、数かつかの金属イオンは水溶液中で酸素酸イオン等を形成し、それぞれ固有の形態を示す場合がある。対象をこのような“服を着だ”金属イオンに向けることで、より高い認識能を取り入れようとする試みも行われている。Saundersらは(10), クロロアクリル酸のウラニル錯体を用いて、エチレングリコールジメタクリレートを標かけ剤として、ジクロロメタン中でアゾビスイソプチロニトリルとともに還流し、フリーラジカル溶液重合を行い、テンプレート樹脂を得ている（Fig. 3）。その結果、Cu²⁺, VO²⁺, Al³⁺, Fe³⁺, Th⁴⁺ よりウラニルイオンに対する選択性が向上することを示した。

また、テンプレート樹脂ではないが、同じように“服を着た”金属イオンを配位子交換により分離する試みも行われている。すなわち、鉄(III)を置換したキレート樹脂がヒ素を良好に吸着することが知られており(15)-16), Matsunagaらは(17), 後述するNTA型キレート樹脂(18)の鉄(III)錯体の高い安定性に着目して、これを 10⁻⁸ mol dm⁻³レベールの微量 As(V) の濃縮定量に適用している(19)。このよ
Fig. 2 Schematic illustration of the surface templating polymerization using oleyl hydrogen phosphate as an amphiphilic host monomer. Divinylbenzene as a resin-forming monomer (oil phase) and divalent metal ion as a target

(Reproduced from ref. 36: Bull. Chem. Soc. Jpn., 69, 637 (1996) with permission from the Chemical Society of Japan)

Fig. 3 Schematic reaction scheme for the preparation of uranyl-imprinted polymer

うまくキレート樹脂鉱体の配位子交換を利用する分離は、有機配位子の分離を対象とした研究例が中心であるが(90,91), 対象となる金属イオンの形態によっては有力な手法となることが分かる。更に一歩進めて、金属イオンを適当な錯体に変換した後でその錯体を有機分子として認識するという手法が成立するなら、選択性の発現手法の幅を広げることもできると考えられる。

さて、配位基導入によりキレート樹脂を得る場合にも、キレート形成基の導入形態の多様化は避けなければならない重要な課題である。複数の配位原子をある特定の位置に配置したキレート形成基を、高分子樹脂内に同一構造で導入するには工夫を必要とする。すなわち、キレート試薬中
の配位基であるアミノ基やヒドロキシル基などは、同時に高分子逐次反応による基体の副の結合部位にもなりうるため、適当な方法では、同一成分のキレート形成基を導入することほど極めて難しい。そこで、鈴木らは(38)，ジェチレントリアミン（dien）の二端の一級アミノ基を、シフツ塩基形成により保護しつつ二級アミノ基から橋かけポリスチレンに導入する手法で，dien を单一構造で含むキレート樹脂を高収率で合成した。次いで、一級アミノ基に種々の試薬を反応させることにより、一連の多価配位型キレート樹脂を合成した(39-40)。これらのキレート樹脂は，dien をそのまま反応させて得られる従来型の樹脂及びその誘導体に比べ，金属イオンの吸着能力と交換容量のいずれにも著しい増大が認められた。このように，キレート試薬の配位性官能基の必要とする部位だけをあらかじめ保護することで，基体導入後のキレート樹脂中の配位基の乱雑化を回避し，その高性能化を実現している。

高分子逐次反応においても，環状配位子の導入は単一構造のキレート形成基の配置を期待する上で，有力な手法である。Rathak らは(41)，p-テルプチルカルクリアゼートを，XAD-4 樹脂にアシル化など数段階の反応を経由して導入した。この樹脂は，その環状キレート形成基の大きさと配位基形成空間に対応して，Th(IV)，U(VI) に対する高い選択性を示すことが確認された。

Yokoyama らは(42)，前躯体として e-カプロラクトンを利用することにより，リシン-A，N-二酸酸の架橋ポリスチレン樹脂への導入に際し，キレート形成基の保護を行い，NTA 樹脂を得ている。この樹脂は，単純なイミノニーラク酸樹脂と比較して，多くの金属イオンに対しより強い親和力を示す。また，キレート形成部位と高分子骨格との間には，e-(CH2)n も存在し，これがスペーサー役を果たしている。このため骨格高分子の影響を大きく受けており，部分的自由度が大きく，配位基自体の機能が発揮されることが指摘されている。すなわち，NTA 樹脂と同じキレート形成基を持つ，ニトリルニ酸樹脂が使用されると新しいキレート形式を形成し，この樹脂の分配係数を比較した結果，極めて良好な相関が認められている(43)(Fig. 4)。

高分子逐次反応に利用する場合には，単体のキレート試薬を用意する必要性がないので，導入しようとするキレート形成基の選択の自由度は高い。これらのような観点から，多数の総説や解説(39-40)(43-46)で紹介されているのでは，参考になると思われる。最近では，ジチゾン(47)，アザプラチルアソプレシソーム(48)，アリザリンアソプレサ(49)など，多く知られる均一系比較試薬と同等の化学構造を持つ，比較的複雑なフエンキリ官能基の導入も多数試みられているのが興味深い。

さて，キレート樹脂の性能を左右するもう一つの要素は，担体の化学的及び物理的構造であることは既に述べた。特に，金属イオン吸着速度には担体の構造が大きく影響する。すなわち，キレート樹脂では，イオン交換樹脂と同様に，金属イオンの樹脂相への拡散と錯形成反応により吸着が行われる。また，粒子内部の金属イオンの拡散速度は速く，一般に吸着の律速段階は粒子内拡散であると考えられている。したがって，拡散を伴う反応を有する，迅速な吸着を達成するのは難しい場合が多い。そこで粒子内ポリフェノールを用いた迅速な粒子内拡散を実現するために，多孔性（MR 型）樹脂は水性樹脂が検討されている。市販されているイミノニニ酸樹脂キレート樹脂をはじめ，多くのキレート樹脂の母体樹脂として利用されているのは，MR 型ポリスチレン系樹脂である。これは樹脂内部に多数の細孔を有しているので，樹脂粒子の比表面積が大きく，結果的に迅速な吸着が期待できるためである。ホルムアルデヒドと各種芳香族キレート形成モノマーとの結合によるキレート樹脂の合成においても，炭素カルシウムを用いた多孔化の試みが報告されている(50)。このように，特に水性樹脂を格骨とするキレート樹脂では，その多孔性は重要な要素である。

一方，樹脂骨格の化学構造を工夫することで，粒子内拡散を促進し，イオン交換速度を犠牲にせずに大きな交換容量を有するキレート樹脂を得る試みも行われてきた。例えば，8-キノノリリノ型架橋ポリスチレン樹脂をスルホン化することで，金属イオンの吸着速度が向上することが示された(51)。また，MR 型架橋ポリスチレン樹脂とメタクリル酸メチル樹脂とでは，後者の吸着速度が大きいことが示された。
2.4 共有型キレート樹脂の分析化学への応用

前項では、合成上の観点からキレート樹脂の高機能化について考えてきたが、ここでその分析化学的適用を焦点を移してみたい。まず第一に考慮しなければならないことは、実用的なキレート樹脂に要求される性能、その用途によって異なってくるという点である。すなわちキレート樹脂の基本的な性能は、(1) 特定の金属イオンに対する高い吸着性、(2) 大きな吸着容量、(3) 遅延な吸着と脱着、そして(4) 強力な吸着に対する耐性、である。しかし、用途に応じた微量イオンの分離濃縮に限られた場合、すなわち微量分析用キレート樹脂のとき、(2) の吸着容量、(4) の繰り返し耐性については、必ずしも重要な要素ではないことがすぐに分かる。なぜなら、この場合、濃縮しなければならない金属イオンの量は極めて微量であり、樹脂内の官能基のごく一部が利用されるに過ぎないからである。また、再生利用ができるかどうかを分析法に依存し、必ずしも必須ではない。しかし、残る 2 条件の高い吸着性と迅速な吸着脱着は微量分析用キレート樹脂として欠くことのできない要件である。これらの要件を満たす樹脂は、その特性と粒子状の形態を生かして、充填ムルによる流通式濃縮法（カラム法）に利用することができ、分析の簡素化と迅速化に貢献する材料となる。

さて、カラム法では、濃縮分離プロセスの違いにより幾つかの手法が提案されている。すなわち、(1) あらかじめ目的イオンだけをカラムに吸着させた後、適当な溶媒液で濃縮液を得る方法、(2) 同様の手法で混合金属イオンをカラムに吸着させた後、逐次分離しながら溶媒液の流れの間に試料を注入し、連続的に分離を行うクラマトラフィーの手法である。このうち、(1) の手法は極めて基本的な手法であるが、原子吸光光、ICP-AES 法などの機器分析に供する試料調製法として適用しているため、幅広く採用されている。また、(2) 及び (3) の手法は、検出手段を工夫することにより流れる連続分析に利用され、最近では分析機器とオンラインで結合した自動分析法へと進展している。

Inoue らは(37)、リン酸ニ酸亜鉛配位子を導入した架橋グリシジメタクリル酸メチル樹脂（NTA ゲル）を合成し、これを充填した分離カラムを用いた希塩類元素のクロマトグラフ分離を行った。その際、分離カラム出口を ICP-MS に PTFE チューブを介して結集することにより、オンラインでの分析を実現している。すなわち、各種希土類金属イオン 5 mg/L を含む試料 50 μL を NT ゲルラムラムに注入し、硝酸イオン濃度を 16 から 80 μmL へと変えるながら溶媒液化することで、14 元素の希土類金属イオンを 15 分以内に同時分離定量することに成功している（Fig. 5）。

Kumagai ら(36)、上記のキレート樹脂と同じ配位基を持つリン酸ニ酸亜鉛ポリスチレン樹脂（NTA-PS）を充填したカラムを ICP-MS に直結し、海水中的重金属イオンの定量を行っている。大気解析に共存するアルカリ、アルカリ土類金属イオンをカラムを素通りさせ、濃縮保持された重金属イオンだけを 0.05 mol/L の硝酸で溶媒化し ICP-MS を介入した。海水標準試料 NASS-4 の分析結果は、標準値とよく一致している。

海水中の重金属イオン濃度は一般に極めて低いので、その測定には濃縮操作が欠かせない。キレート樹脂による濃縮は、大掛かりで複雑な装置や有機溶媒が必要としないため、船上のオンライン分析に適している。Okata ら(38)、Landini ら(39) の手法に従って合成した、8-キノリノール型キレート樹脂を充填したカラムにより、海水中の Fe(III) の自動分析システムを構築した。ルミノール反応を利用す
流注射マニフェストと操作の順序（前処理一電気熱吸収分析吸光度スベクトロメーター分析）

Fig. 6 Flow injection manifold and sequence of operations for preconcentration-electrothermal atomic absorption spectrometry analysis

Thick lines show flows at different stages. (a) Tubing cleaning with sample; (b) column preconditioning; (c) sample loading; and (d) elution into graphite furnace. S = autosampler syringe; PC = column preconcentration vessel (packed with Chelex-100, 50-100 mesh); V₁ = valve 1; V₂ = valve 2; V₃ = valve 3; C = column (Chelex-100); P = peristaltic pump; W = waste; 1 = sample nozzle; 2 = polyurethane foam; 3 = chelating resin; 4 = injection tip. The tubing between V₂ and V₃ was kept to the minimum length (1 cm). [Ref. 76: Analyst, 122, 679 (1997)] - Reproduced by permission of The Royal Society of Chemistry

の化学発光検出器との組み合わせで、18 cm³の海水試料中の0.05 mmol/dm³のFe(III)を検出している。更にBowieらは⁷⁷, これ改良してフローインジェクション法とし、わずか1.5 cm³のサンプル量で40 pmol/dm³のFe(III)の定量に成功している。

このようなキレート樹脂を利用した分離精製システムを完全に自動化する試みが行われている。Fernandezらは⁷⁸, Chelex-100を充填したミニカラム（1.8 cm × 3.0 mmφ）を黒鉄炉原子吸光装置の試料導入部に取り付けたフローシステムを構築し、コンピュータ制御によりCd及びPbの自動分析を行っている（Fig. 6）。

2.5 共有結合型キレート樹脂のイオン交換機構

さて、キレート樹脂の性能の向上を図る上で、イオン交換機構に関する理論的な考察も重要な要素である。キレート樹脂のイオン交換モデルに関して、イオン交換樹脂に準じた取り扱いが一般に行われてきた。例えば、多くの場合、吸着の平衡モデルは、Langmuir吸着等温式やその拡張式で整理されている。これも、キレート性官能基が樹脂相内に均一に独立して分布し、金属イオンが均一構造の錯体として吸着する系で認められ、吸着機構がLangmuirの吸着モデルの仮定によく合っていると考えられる。Shahらは⁴⁷,⁷⁹, ジチゾン基を含むポリスチレン樹脂による二価金属イオンの吸着を、イオン交換を考慮した拡張Langmuir式（1）で整理し、実験結果をよりよく再現することを確かめている。

\[\frac{C_r}{q_r} = \frac{C_r}{Q}(1 - x/\alpha y) + \frac{C_r}{\alpha y Q} \]

ここで、\(q_r \)はAの吸着量（mmol/g）、\(C_r \)はAの溶液中の平衡濃度、\(C_r \)は金属イオンの初期濃度、\(Q \)は最大交換量、\(x \)と\(y \)はそれぞれAとBの電荷、\(\alpha \)は両者の分離係数を示している。

Pesahentoらは⁸⁰,⁸¹, 一連の研究の中でイミノニフ酸
キレート樹脂であるChelex-100の金属イオンに対する吸着特性を、Gibbs-Donnanモデルに基づき平衡論的に解析し、このキレート樹脂が生成する錯合成体と関連付けて選択性を説明している。すなわち、キレート樹脂相中と水相中で錯体が形成されている場合、キレート樹脂の吸着特性が、対応する類似構造のキャリア膜の錯合成形によく一致する現象に対する理論的な裏づけを得た。更に、熱力学的取り扱いをRivasらが、α-ビニルビリジン及びN-ヒドロキシメチルアクリルアミドとの共重合体の金属イオン吸着反応について行っている。この場合、吸着反応を通して$\Delta H''$が変化しないという仮定を置いていますが、ラジカルイオンの吸着反応の$\Delta H''$が、物理吸着のそれに比べて大きく化学吸着のそれよりも小さいことを指摘し、両者が混在した吸着モデルであろうと推察している。

一方、数々の速度論的モデルが、HerfficherらやSchmucklerらによって提案されている。すなわち、イオン交換樹脂では、Boyedらが提案している等温拡散機構及び粒子拡散機構との二つの吸着機構が検討されており、キレート樹脂を取り扱う場合でも、基には同様の考え方で適用される。前者のモデルは、イオン交換樹脂の表面に沿って金属イオンが移動していくモデルであり、後者は、樹脂の三次元ネットワークに侵入する方向的吸着モデルを表している。キレート樹脂粒子を用いる限り、一般的にこれらの機構による金属イオンの拡散は比較的遅く、錯合成速度が律速段階となることはない。しかし、キレート樹脂粒子の表面の官能基のみを利用する条件において、錯体化が発生する機構を考慮されることになると考えられる。また、上記の二つのモデルのいずれでもあるとは、様々な条件によりそれぞれ異なるが、粒子拡散機構をとることも多い。しかし、いずれの場合も粒子内での拡散が律速であることから、そのイオン交換速度を増大させるためには、金属イオンの粒子内での拡散を可能な限り大きくするような骨格の設計を行うか、あるいは、粒子内部を使用しないような材料を選ぶ必要があることが示唆される。

ポリスチレン樹脂であるAmberlite-XAD-16は、比表面積と細孔径のいずれもかなり大きな樹脂として知られているが、Leeらは、これにアンチロジンソノソルブル基を導入することで、吸着速度の改善を図っている。この樹脂50 mgを0.5 mmol/m²のU(Ⅵ)水溶液100 cm³と振る混ぜたところ、ほぼ15分で平衡に達することを見いただいている。またDenizliらは、アルカリリチウム6Bを導入して調製したポリ（2-ヒドロキシエチルメタクリレート）を膜状に成形し、表面近い官能基を積極的に利用することで迅速な吸着を示すキレート樹脂を合成している。0.5 cm角としたこの樹脂シートを、1 mmol/m²のCd(II)、Zn(II)及びHg(II)水溶液と振る混ぜたところ、30分以上の振り混ぜで平衡に達すると報告している。

一般的に、キレート樹脂の理論的な取り扱いは、高分子材料中の不均一な立体環境の中において、様々な構造のキレート形成基の性質を評価することになるため、厳密な意味での解析を適用するには困難がある。しかし、ここに紹介した分子膜込み法のようなキレート形成基の設ける場合を構築しうる合成手法が進展すれば、かなり均一な錯合成環境を樹脂内部に設定することができるようになり、より明快な解釈が可能になる。同様に、より高性能のキレート樹脂の作成が期待される。
基を担体に化学結合させる必要がないため、その調製の容易さが大きな特徴である。Table1 と比較してみれば、試薬含浸樹脂にはキレート樹脂では合成が困難な、複雑な配位子も広く利用されていることが分かる。

3.2 キレート試薬含浸樹脂の調製法
さて、試薬含浸樹脂の合成用担体には、化学的安定性や親水性試薬の保持に都合が良いため、有機分子担体が採用されることが多い。また、活性炭[10][11]やアルキル修飾シリカゲル[12]も、その親水性を生かして担体として利用されている。一方、含浸する試薬が極めて水に不溶解しにくい場合には、吸着過程における試薬の損失が少ないので、親水性のシリカゲル等も担体として活用することができる[13]。さらに、担体の親水性が適度に有効に作用するように最適化されている[14]。しかし、シリカゲル系材料は、酸・アルカリに対する化学的安定性に乏しく、その点では有機高分子担体に優位性がある。特に、粒子内に多数の細孔を持ち比表面積が大きいMR 型樹脂は、比較的少量の試薬を含浸させることができる。合成用担体として利用しやすい、例えば、有機物分離吸着用の市販高分子樹脂 Amberlite XAD シリーズ（XAD-2, XAD-4, XAD-7 等がある）や、より Amberlite を省略し、単に XAD-2 などとする）はしばしば担体として採用され、これらの MR 型樹脂の構造と含浸樹脂のイオン交換特性との関係も検討されている[15]。

一方、グレーパ含浸樹脂を利用する例では、Bayer AG 製の LeveXtrex樹脂がある[16]。これは含浸用試薬の共存下、担体高分子を重合して格子を形成させ、樹脂中に試薬を含浸することにより調製される。また、樹脂含浸樹脂の原形を用いる Small の方法[17]も、グレーパ含浸樹脂を利用するものであった。彼は、合成した架橋ポリスチレンゲル粒子が会合して塊とならないようにするために、まず粒子表面をスルホン化し、これを充填したカラムに TBP のベクタロエチレン溶液を通すことで、TBP 含浸ゲル粒子を得ている。これに対し、MR 型樹脂を利用して試薬含浸樹脂の調製法には、試薬の保持方法の違いにより、主に溶液除去法[18]と平衡吸着法[19]が考えられる。前者は、適当量の試薬を溶液に溶解した揮発性溶媒に樹脂粒子を加え、一定時間放置した後に溶媒のみを蒸発させる手法であり、後者は、水溶液やアセトニトリルから樹脂へ試薬を吸着させて調製する手法である。また、含浸後の溶媒の処理に関して、“a dry method”と“a wet method”とに区分する例もある[20]。これらは試薬の保持法ではなく、試薬保持後の溶媒を蒸発させるか樹脂中に残さかという違いを示している。また、デカンタン等樹脂骨格を剥離させない高濃度溶媒を希釈材として、キレート試薬と図に含浸する方法など、両者の中間に位置する含浸法も行われている[21]。このほか、Small の方法を準じて、樹脂粒子をカラムに充填した状態で含浸用試薬溶液を通し、そのまま分離カラムに供するいわゆる “dynamic coating” が行われており[22]、様々な調製方法が採用されている。しかし、後述するように、含浸する手法が変われば、樹脂中の試薬の存在状態が変化するため、それぞれ特性の異なる試薬含浸樹脂となる点に注

| Table 2 Chelating reagents used for the recent reagent impregnated resins |
|-----------------------------|-----------------------------|-----------------------------|
| Chelating reagents | Chemical structure | Ref. |
| 8-(Benzenesulfonamido)quinoline | 0 | 171 |
| Congo red | 2 | 172 |
| Cyanex 272 | 3 | 173 |
| Cyanex 302 | 4 | 174 |
| Cyanex 923 | 5 | 175 |
| Diamyl amylphosphonate | 6 | 113 |
| D2EHPA | 7 | 124 ~ 125, 177 |
| PC-88A | 8 | 115, 185 ~ 189 |
| TOPO | 9 | 194 |
| Diallyldihydroxyphosphoric acid | 10 | 176 |
| Diethyl-4-hexylphosphonate-4-methylphosphonate | 11 | 178 |
| 0-Methyl-4-hexylphosphine-oxide | 12 | 183 |
| Di(2-ethylhexyl)ammonium di(2-ethylhexyl)dithiocarbamate | 13 | 179 |
| Erichrome Blue Black R | 14 | 180 |
| Li-84 I | 15 | 181 |
| 2-Mercaptoethanolisothiazole | 16 | 182 |
| neo-tetra-(4-Sulfophenyl)porphyrin | 17 | 184 |
| Pyridones | 18 | 190 |
| 4-(2-Pyridyl) azoresorcinol | 19 | 180 |
| Pyrocatechol Violet | 20 | 180 |
| 2-(2-Thiazolyloxy)-5-[(N-N-carboxymethyl)amino]benzoic acid | 21 | 191 |
| Thionalide | 22 | 192 |
| Thorin | 23 | 193 |
| Tribenzylamine | 24 | 195 |

基を担体に化学結合させる必要がないため、その調製の容易さが大きな特徴である。Table1 と比較してみれば、試薬含浸樹脂にはキレート樹脂では合成が困難な、複雑な配位子も広く利用されていることが分かる。
Fig. 7 Chemical structures of the reagents used for reagent impregnated resins
基づいて金属イオンの選択性が発現する。このことは、溶媒抽出における経験を基に、試薬の選定を行うことができることを意味する。例えば、ジアソニヨン含有ゲル型樹脂による Hg(II) の分離濃縮・原子吸光分析 \(^{[19]}\)、トロポロンを含浸した XAD-2 によりトリプチル硫酸の濃縮分離が、その黒鉄原料子吸光分析の前処理に適用されている \(^{[20]}\)。また、含硫黄配位子である 2-メチルペンソツアゾール基含浸樹脂が Hg(II) の濃縮に適用されている \(^{[21]}\)、微量の As(III) の濃縮に、ビス (2-エチルヘキシリル) ジチオカルバミン酸ビス (2-エチルヘキシル) アンモニウム含浸 XAD-7 が有効であることが報告されている \(^{[22]}\)。

抽出試薬としてしばしば利用されるリン酸エステル系抽出試薬は、含浸樹脂でもよく用いられる試薬群の一つである。その性質を利用して、希土類元素やチタニウムイオンの分離に効果的に適用されている。例えば、リン酸トリプチル含有樹脂によるウランの不純物の分離、U(VI) と Th(IV) の分離 \(^{[23]}\)、Am(III) の分離 \(^{[24]}\) が行われている。更に、ジアミノホスホン酸ジアミル含浸樹脂によるウランの分離 \(^{[25]}\)、ジ (2-エチルヘキシリル) リン酸 (D2EHPA) 含浸 XAD-7 \(^{[26]}\) や、2-エチルヘキシルホスホン酸 2-エチルヘキシルシリン酸 (PC-88A) 含浸 XAD-7 \(^{[27]}\) により、希土類金属イオンの分離が行われている。

また、D2EHPA とトリオクチルホスフィンオキシド (TOPO) との混合試薬系は、ウランの抽出によく用いられるが、その含浸樹脂が純化リン酸溶液からのウランの分離に有効であることが確かめられた \(^{[22]}\)。溶媒抽出における協同効果を、含浸樹脂でも期待できる場合があることが示唆されている。常温で液体として存在する試薬は、含浸された樹脂細孔内でも液体として存在しているものと推察され、実質的に抽出反応を行っている状況に近くなるためと思われる。

更に大きな分子については、もう少し興味深い結果が報告されている。すなわち、Core らは \(^{[28]}\)、8-キシノリールの長鎖アルケチル誘導体である Kelex-100 を、XAD-7 に含浸して得られる樹脂の固体 NMR を測定し、試薬と XAD-7 との相互作用を調べている。その結果、Kelex-100 のアルケチル鎖は、XAD-7 表面への吸着により固定されているが、8-キシノリール部分のキャレット形成部位は、比較的自由に運動していることを明らかにした。このことから、含浸する試薬の構造によっても、試薬自体の細孔内での流動が期待できず、試薬として選択する溶媒抽出反応系とは異なる機構が支配的になる可能性も否定できない。例えば、常温下で固体のメチルシル (2-チオリアルアルコール) レソレシノールを、XAD-7 に含浸担持した樹脂の Cu(II), Ni(II) 及び Co(II) に対する分配数の測定は、その基本化合物である 4-(2-チオリアルアルコール) ロレシアリノールの溶液系での主をた化学種である 1:2 鋼体の生成段数の順序ではなく、1:1 鋼体のそれに一致することが分かっている \(^{[29]}\)。

試薬の樹脂に対する親和力の大きい場合には、その試薬は樹脂表面に固定されるため、試薬含浸樹脂と樹脂樹脂との関の形成反応特性の変化が、ほとんどなくななることが示唆される。一方、試薬の固定され方によっては、イオン交換特性が樹脂樹脂と溶媒抽出とも異なるものとなる可能性もある。樹脂内での試薬の存在状態を細かくコントロールできる材料の出現が、これらの現象を解く有力なカギになると思われる。

3-4 試薬の含浸状態とイオン交換機構との関係

Jarabek らは \(^{[30]}\)、もう少し詳細に MR 型樹脂の構造特性と、含浸される試薬の存在状態について試薬吸着の観点から考察している。すなわち、幾つかの構造の異なるポリスチレン系樹脂粒子に、ジ (2-エチルヘキシル) ヨードリン酸 (DEHPA) をメタノール溶液から吸着させた場合、吸着等温線や比表面積の変化を測定した。その結果、DEHPA の吸着は、粒子の吸水表面に均一に吸着するモデルとは異なり、まず粒子内の直径 1.5 μm 以下の小さな細孔から始まり、次いで 10 μm 以下の細孔に起こると結論している。このモデルは、前述の平衡吸着系による試薬含浸に相当する。したがって平衡吸着法では、条件によって上記のような含浸樹脂を得ることを考えるべきである。

一方、必ずしも常にこのような樹脂が得られるわけではないことも示されている。エタノール溶液からの平衡吸着法により、Cyanex272 \(^{[31]}^{[32]}\) あるいはジトリメチルホスホン酸 (DTMPA) \(^{[32]}\) を含浸した XAD-2 樹脂が調製されている。Cortina らは \(^{[33]}\)、Cyanex272 を含浸した樹脂では、一定量までは表面への吸着が進行し、過剰分が細孔内部に保持されるが、この場合 Jarabek とは若干異なるモデルを示している。すみやかに、試薬はミクロな細孔内部へと吸着されるのではなく、粒子内の細孔全域に平衡吸着されるモデルが想定されている。

また、DTMPA 含浸樹脂を用いた Zn(II), Cu(II) 及び Cd(II) の吸着反応について、速度論解析を行っている。反応モデルとして、均一粒子内拡散モデル (HPDM) 及び表面進行モデル (SPM) を検討した。HPDM は金属イオンが外部水溶液から粒子表面に拡散し、更に粒子内に均一に拡散した後、内部に存在するイオン交換反応に反応するモデルであり、SPM は粒子格子が硬く、実質的に格子内部には金属イオンが侵入できない場合に、表面に存在する試薬と金属イオンが反応するモデルである。定量的な解析の結果この系では、SPM モデルにより吸着が行われると結論している。この場合でも、Jarabek らが指摘する試薬含浸位置が均一する現象は示されていない。平衡吸着法だけでなく、溶媒抽出法を用いた場合でも、MR 型樹脂内での試薬の存在状態は必ずしもよく分かっていな
図 8 Schematic diagram on the relation between volume of PC-88A and the specific pore volume of Amberlite XAD resins

The size of each box corresponds to the specific pore volume of each resin. A light gray part means the space filled with PC-88A. A dark gray part means the filling out of the pores by the addition of dodecane that makes practically homogeneous PC-88A solutions. Symbols of (A), (B), (C), (D) and (E) corresponds to the explanation in the text.

以上の結果から、試験管内吸着は、基体や試薬の種類、試薬吸着量、吸着方法など、試薬金属イオン吸着の平衡論、速度論の特異性に密接に関係することが明らかである。しかし、その新しい関係については、必ずしも明確になっているわけではない。いずれにしても、これらの条件を工夫しうることで、良好な分離濃縮特性を持つ材料の開発にとって必要かつ重要な要素であると考えられる。

4 おわりに

本稿で概観したキレート樹脂や試薬含浸樹脂などの固体吸着材は、1) 金属イオン選択性が大きい、2) 分離の際して大量の有機溶媒を必要としない、3) 濃縮倍率が大きい、4) 連続処理などの操作が行いやすい、など多くの利点を持つ分離材である。

キレート樹脂の開発を考えるうえに、高い選択性を得るためには、表面積、比表面エネルギー、空隙率、孔径分布、結晶粒度、取縮係数、吸着速度、平衡速度などのプロセスパラメータの最適化を行うことが重要である。
持つキレート樹脂は、一般に製造コストがかさむ傾向にあり、そのためにも配位基が置かれる化学的・物理的環境に工夫を加えて、より実用的なキレート樹脂を開発する必要性は大きいと思われる。

また、配位性官能基の置かれる環境が固体吸着材の性能に大きく影響していることは、試薬含浸樹脂でも同様であることが分かった。優れた分離特性を示す試薬含浸樹脂の調製には、含浸する試薬や担体の選定ばかりでなく、含浸方法の吟味も重要であることが示唆されている。

はじめに述べたように、これらの固体吸着材は、超微量金属イオンの予備濃縮のほかに、有害金属イオンの除去、希少金属資源の回収、などの幅広い用途に適用できる有用な分離材である。したがって、煩雑な操作とコストのかさむ計測手段が敬遠される最近の分析技術の流れの中で、十分活躍できる要素を持った分離技術として、本稿で紹介したような、固体吸着材を利用したより優れた手法の出現が期待されている。

文 献
1) 吉村和久，松岡史郎，天日美薰：ぶんせき（Bunseki），1998，430。
2) 坂廣一ミ：ぶんせき（Bunseki），1997，583。
3) 島尾，阿部光雄，鈴木，種："イオン交換"，(1991)，(講談社)。
4) A. Clearfield："Inorganic Ion Exchange Materials"，(1982)，(CRC Press，Boca Raton)。
8) 寺田喜久雄，ぶんせき（Bunseki），1993，514。
9) 寺田喜久雄，表面，27，360 (1989)。
10) 平山和雄，ぶんせき（Bunseki），1993，533。
11) 井上勝利，馬場由成：J. Ion Exch.，8，115 (1997)。
12) 北条昭正："キレート樹脂，イオン交換樹脂"，(1976)，(講談社)。
13) 三枝武夫，上田英和，平井英史："高分子金属錯体"，化学増刊77 (1978)，(化学同人)。
14) R. Shah，S. Desa，Talanta，45，1089 (1998)。
18) 吉田，林，健司，前田弘憲，相良文雄，石井大道，上野景平：日本化学会誌，1993，549。
19) T. M. Suzuki，T. Yokoyama：Polyhedron，2，127 (1983)。
22) H. Nishiido，E. Tsuchida：Macromol. Chem.，177，2295 (1976)。
29) 亀戸弘夫，鈴木英博，塚原一雄，前田瑞夫，高木誠，牧秀志，宮島，徳：高分子論文集，50，403 (1993)。
要 旨

金属イオンに対して選択的なイオン交換特性を示す固相吸着材の中から、いわゆる狭義のキレート樹脂である共有結合型キレート樹脂と、その拡張型である試薬含浸型キレート樹脂とを取り上げ、その開発の流れと現状の問題点、そして将来への展望について概説した。キレート樹脂のような固相分離材を用いれば、簡素で環境汚染の少ない分離濃縮操作を実現できる。固相分離濃縮法は、このような理由から21世紀の中心的分離手法の一つとなる可能性を秘めた手法であり、キレート樹脂はその代表的構成要素となりうる分離材である。いずれの型のキレート樹脂においても、金属イオンを認識する官能基の種類が極めて多様化してきており、高機能化の試みが続けられている。特に、共有結合型キレート樹脂は、分子印章込み（molecular imprinting）法による合成がその特性の向上に大きく寄与する可能性があること、また試薬含浸型キレート樹脂の調製では、樹脂内における試薬の存在状態を制御することが機能化の有力手段であることを紹介した。