キトサンを塗布した双型水晶発振子を用いる銅(II)の定量

包 山 虎*，野村 俊明**

Determination of copper(II) in solution using a twinned piezoelectric quartz crystal coated with chitosan

Shanhu BAO and Toshiaki NOMURA*

*Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1, Asahi, Matsumoto-shi, Nagano 390-8621

(Received 25 December 2001, Accepted 4 March 2002)

A twinned piezoelectric quartz crystal (PQC) was constructed with two of one electrode-separated PQCs, one of which oscillates separately. One of them was coated with a functional polymer film which could adsorb an analyte and the other with a polymer film having the same frequency behavior against the liquid properties, except for the adsorption of an analyte. Thus, the different frequency behaviors between the one electrode-separated PQCs result mainly from the adsorption of the analyte. On the other hand, the frequency behavior caused by the chitosan coating could be controlled with a coating of cellulose acetate on the other PQC. By controlling the experimental conditions, the twinned PQC selectively adsorbed copper(II), and the frequency change was proportional to the concentration. The adsorption of copper(II) onto chitosan, however, increased with the frequency. It was supposed that the adsorbed water on the chitosan with the hydrogen bond was removed by complexing with copper(II), and then the frequency was increased because of decreasing mass on the chitosan.

Keywords: copper(II); piezoelectric quartz crystal (PQC); chitosan.
去する方法、及びキトサンを塗布した水晶振動子の溶液中の振動数挙動を調べるとともに、金属イオンのキトサン膜との細胞形成反応を利用して、選択的に鉄（II）を付着させることを試みた。

2 実験

2.1 装 置

用いた水晶振動子（九州電通製）は直径8mm、9 MHzのAT カットで、水晶振動子の片面のみに直径5mmの金電極を蒸着したものである。双型水晶発振子はこの水晶振動子二つを金電極を外向きにして平行に設置し、間に白金板電極を挿入したもので、それぞれの水晶振動子はトランジスターオシレータに接続し、直流定電圧電源を用いて6.0 Vの電圧を印加した。振動数は周波数計（岩崎通信、SC7204）で読み取るとともに、パーソナルコンピュータ（NEC、PC9801VM）に接続し、振動数を記録した。試料溶液は送液ボンプ（井内精堂、MP-3）を用いて、双型水晶発振子を装備したフローセル内に一定の流量で流れるようにした。なお、液温は恒温槽で一定にした。

2.2 試 藤

高分子を水晶振動子に塗布するための遮蔽溶液は、キトサン1000（和光純薬製、一級）を5 wt%酢酸水溶液に、酢酸セルロース、エチルセルロース（和光純薬製）とポリメタクリル酸メチル（Aldrich Chemical）を混合し、ポリスチレン（General Science Corporation）をベンゼンに、濃度が2 mg/mlになるようにそれぞれ溶かして冷却庫に保存した。標準溶液を調製するために用いた試薬は、すべて特級試薬（和光純薬製）であり、金属イオンの遮蔽溶液の濃度は0.01 Mとし、使用の都度希釈した。振動数をアノモニウム塩で使用した。

キトサン膜の塗布には、2 M水酸化ナトリウム水溶液で水晶振動子を30分間脱脂し、脱イオン水で洗浄して乾燥した後、適当な濃度のキトサン溶液4 μlを塗布面積が裏面の金電極の大きさと同じになるように滴下する。そしてガラス管に差し込む、40℃の恒温器で30分間乾燥する。次にメタノールと2 M水酸化ナトリウム水溶液の1:1混合溶液で続いて、2時間放置した後、脱イオン水で十分洗浄してフローセルに装着する。キトサンを塗布した後、30分以上放置すると硬くなり過ぎて、発振しなくなる場合がある。また、キトサンの塗布量の増加につれて水晶中に基本振動数が減少し、その減少した振動数変化量は、Sauertreyの式によくて予想した理論振動数変化量よりも大きくなった（Fig. 1）。これはキトサン膜表面と水晶との間に水素結合が形成し、多量の水が付着して水晶振動子の質量が増加するために、より大きい振動数変化量が得られたものと考えられる。一方、ポリスチレンは計算値とおおむね一致している。なお、キトサン膜は酸性溶液中では安定であるが、塩基性溶液中では非常に不安定であり、キトサンを塗布した水晶振動子を半年使用しても、膜の損失による振動数の減少は見られなかった。

3 実験操作

脱イオン水を流した後、空試験液として60 mMアンモニウム塩溶液を振動数一定になるまで流し、次に金属イオン試料溶液を3分間流した。再び空試験液に戻して振動数一定になるまで流し、金属イオンの付着による振動数変化を求める。キトサン膜上へ付着した金属イオンは、10 mMアンモニウム塩溶液で調製した1 mM EDTA溶液を10分間流して溶離した。

3.1 双型水晶発振子の溶液中での振動数挙動

双型水晶発振子を装備しているフローセル内、流量4.5 ml/minで脱イオン水を流して振動数が一定になった後、各種濃度のスクロース水溶液、塩化カリウム水溶液に切り替え、振動数変化量を調べた。400%濃度までのスクロース水溶液中で安定に発振し、二つの水晶振動子（A及びB）とも振動数変化量（Δf/Hz）は溶液の粘度（η）及び密度（ρ）に対して、式 Δf = a(ηρ)1/2 - 1.0 (a：比例定数)に従いよく一致した。塩化カリウム水溶液中でも、
電気伝導度が0.5 mS/cm までは、二つの水晶振動子とも電気伝導度に比例して振動数変化量が増加し、振動数変動はよく一致した。1mS/cm 以上になると、二つの水晶振動子の間には約 500 Hz の差が生じたが、その差は一定であり、両者とも電気伝導度が増加しても振動数変化量は一定となった。一般に電極と水晶振動子との距離が大きくなるにつれて、振動数変化量が大きくなるので、二つの水晶振動子と白金板電極との間の距離のわずかな違いが、振動数変動に影響を与ええたものと考えられる。実際の実験において、空試験溶液や試験溶液は、塩酸溶液あるいは弱電解質溶液を加えることによって、電気伝導度変化を0.5 mS/cm 以下に制御し一定にすることができるので、電気伝導度の影響は無視できる。

溶液の温度が29℃から32℃に変化したとき、双晶水晶発振子を構成する二つの水晶振動子の振動数は、それぞれ98 Hz 及び108 Hz 増加し、液温が32℃から31℃に変化したとき、それぞれ89 Hz 及び91 Hz 減少した。液温が変化したとき、水晶振動子の基本振動数は大きく影響を受けるが、二つの水晶振動子の振動数変動はほぼ同じであるので、その振動数差はほぼ一定であり、測定中では温度からの影響も無視できる。

キトサンを塗布した水晶振動子A及び、膜塗布していない水晶振動子Bより構成される双晶水晶発振子に、塩化ナトリウム、塩化カリウム及び塩化アンモニウム水溶液を流したときの振動数変動をFig. 2に示す。ほかの型の水晶発振子と同様に溶液の電気伝導率に対して、膜を塗布していない水晶振動子Bの振動数変動は化学種に関係がないが20, キトサンを塗布した水晶振動子A膜のない水晶振動子Bと比較すれば、いずれの化学種においても振動数変化が大きく、そして化学種によって振動数変化量が異なる。これはキトサン膜にアミノ基があるため、酸性や中性溶液中ではキトサン塩を生成し、電気伝導度の影響を受けやすいためと思われる。

しかがって、キトサン塗布により生じるこの差を相殺するため、他方の水晶振動子Bには、酢酸セルロース、マルチセルロース、ポリエチルメチルメチル水酸エステルなどの高分子を塗布して、溶液の温度、電気伝導度、粘度及び密度に対する振動数変動を考察した。検討した膜の中で、酢酸セルロース膜のみがキトサン膜と振動数変動がよく一致した。なお、双晶水晶発振子において、それぞれの水晶振動子中央に設した白金板電極との間隔が異なると、たとえ両方の水晶振動子に同様の膜を塗布しても、振動数特性に差異が生じることがあり、間隔にも注意をすることが重要である。

3.2 キトサン膜上への物質の付着による振動数変動

60 mM アンモニウム塩酸溶液（pH 9.5）を用いて調製した、銅（II）、ニッケル（II）、コバルト（II）、カドミウム（II）、亜鉛（II）及び銀（I）の6種類の金属イオンそれぞれ6μMを含む溶液を、双晶水晶発振子に3分間流した際の、キトサン膜上への付着による振動数変化の状態をFig. 3に示す。これらの金属イオンの中で、銅（II）はキトサン膜上へ強く付着し、アンモニウム塩酸溶液を流しても振動数が減少せず、付着した銅（II）は膜表面から溶離していないうちと考えられる。ニッケル（II）、コバルト（II）、カドミウム（II）及び亜鉛（II）もキトサン膜上に付着するが、付着による振動数変化量は銅（II）より少なく、金属イオン溶液が流れている間に振動数が一定になり、アンモニウム塩酸溶液を流すと振動数が徐々に減少し、キトサン膜からこれらが徐々に溶離したものの思わされる。なお、この条件下では、銀（I）は付着しなかった。一方、酢酸セルロースを塗布した水晶振動子Bへのこれらの金属イオンの付着による振動数変化は見られなかった。

一般に溶液に浸された水晶発振子（基本振動数F. MHz）は、大気中に同じに、面積A（cm²）上に物質がDg（g）付着すると、式Df = 2.3×10⁶F²（Dg/A）に従って21, 質量増加により振動数が減少（変化量Df Hz）する。しかし、Fig. 3から明らかように、金属イオンがキトサン膜表面に付着すると振動数が増加する。これは塗布したキトサン膜にキトサンの質量の約2倍量の水が付着している（Fig. 1）が、金属イオンの結合により過剰の水が放出され、結果的に水晶振動子上の質量が減少したために振動数が増加したものと思われる。

リン酸塩水溶液を用いて調製した硫酸デジタルカリウム（SDS）水溶液を、キトサンを塗布した水晶振動子上に流すと、振動数が増加してから減少した（Fig. 4）
リン酸塩緩衝溶液を用い、付着したときと逆に進むと考えられる振動数変化を示した。pH 8.0 ではキトサン膜は正に帯電しており、SDS が最初に親水性部分で付着してキトサン膜表面に水素結合で付着している水を追い出し、振動数が増加したと考えられる。キトサン膜表面上に親水性部分で付着できなくなると、次に親水性部分で SDS が付着して水晶振動子上の質量が増加するために、水晶振動子の振動数が減少するものと考えられる。リン酸塩緩衝溶液を用いて溶解すると、逆の現象が起こるために鏡像関係の振動数変化が起こったものと思われる。一方、SDS 水溶液をポリスチレン膜上へ流したところ、まず液性による振動数の減少が現れ、次に SDS の付着によるステージ振動数の減少が現れた。これの減少は SDS の濃度の増加とともに増加した。この場合ポリスチレン膜上には水が付着していない（Fig. 1）ので、SDS の付着による質量の増加のみとなり、振動数が減少したものと思われる。このように、塗布した機能性膜によっては、物質の付着することによって振動数が増加することがあるが、詳細については後日報告する予定である。

3-3 鉄(II) の選択的付着に対する最適条件
3-3-1 緩衝溶液の濃度及び pH の影響 アンモニウム塩緩衝溶液の濃度を変化させて、種々の金属イオンの付着挙動を調べた（Fig. 5）。アンモニウム塩緩衝溶液の濃度の増加について、鉄(II) 以外の金属イオンの付着による振動数変化量が大幅に減少した。これはアンモニウム塩の濃度の増加について、金属アンモニウム錯体とキトサン膜上のアミノ基との配位子置換反応が難しくて付着しなくなるためと考えられる。したがって、緩衝溶液の濃度を制御することによって、鉄(II) をより選択的にキトサン膜上へ付着させ、ほかの金属イオンからの妨害を避けられることが分かり、本研究では 60 mM のアンモニウム塩緩衝溶液を選んだ。アンモニウム塩緩衝溶液の pH を変化させて、鉄(II) の付着挙動を調べた結果、pH が大きくなるにつれて付着による振動数変化量が減少した（Fig. 6）。これは上に述べたように、鉄(II) の付着が鉄(II) のアンモニウム錯体とキトサン錯体との競争反応によるためと考えられる。したがって、1:1 の 60 mM のアンモニウム塩緩衝溶液（pH 9.5）を使用した。
3.5.2 温度及び流量の影響 測定中の温度の影響をもとめ、鋼（II）のキトサンたん白への付着に対する温度の影響を調べたところ、温度が 1℃ 上昇するにつれて付着による振動数変化量がほぼ 12 Hz 増加した。この原因は、キトサンたん白への塗装形成反応は温度が高くなるほど遅くなるためと思われる。絶対温度の逆数に対して振動数変化量の対数をプロットすると直線を与え、この直線の傾きから Arrhenius 式より、塗装形成反応の活性化エネルギー ΔEa を求める 32.0 kJ mol⁻¹ となった。流量を 2 ml/min から 8 ml/min まで変化して測定したところ、流量が速いほど付着による振動数変化量が大きくなくなった。これはキトサンと鋼（II）との結合が安定であるために、鋼（II）溶液の流速が増加するにつれて、付着量が増加したためと思われる。本実験では 4.5 ml/min を用いることにした。

3.5.3 キトサン塗装と鋼（II）の付着による振動数変化との関係 キトサン塗装の増加について、6.0 μM 鋼（II）の付着による振動数変化量は大きくなった。鋼（II）のキトサンたん白への付着挙動は単純な塗装形成反応と考えられ、キトサンの塗装量が大きくなるほど、単位面積に付着する水の量が増加するため（Fig. 1）、鋼（II）の結合により放出される水の量が増加して振動数変化量が増加したものと考えられる。

3.5.4 共存イオンの影響 ニッケル（II）、コバルト（II）、カドミウム（II）、亜鉛（II）及び鉛（I）は妨害しないが、アルカリ性セロロースを生成する鉄（II）、酸（II）、マンガン（II）、鉛（II）及びアルミニウム（III）は妨害する。そこでトリエタノールアミン、グリシン、クエン酸二水素カリウムなどのマスキング剤を用いて、妨害イオンの影響を調べた。これらの 1 mM のマスキング剤を含む溶液中では、6 mM 鋼（II）イオンの付着による振動数変化量は、それぞれ 104、22、22 Hz、マスキング剤を入れていない場合（590 Hz）と比べれば、それぞれ 73.4、94.4、43.3% 減少した。したがって、本実験でクエン酸二水素カリウムをマスキング剤として選んで妨害イオンの影響を調べた。各種イオンの付着による振動数変化量を Table 1 に示した。以上よりマスキング剤としてクエン酸塩を用いることにより、塩基イオンを排出することが妨害を少なくすることができるが、鋼（II）にこれらの金属イオンを共存させた場合、鋼（II）の付着による振動数変化を誤差 5% 以内で求めることができた。

3.5.5 鋼（II）の濃度と振動数変化量との関係 双型水晶発振子の水晶振動子 A 上にはキトサン（キトサンの塗装による振動数変化量は 10295 Hz）を、水晶振動子 B には塩酸セロロース（塩酸セロロースの塗装による振動数変化量は 5420 Hz）を塗装して、鋼（II）溶液の濃度（C μM）に対する付着による振動数変化量（ΔF, Hz）との関係を調べた。1 〜10 μM の濃度範囲の鋼（II）溶液を 3 分間流した際の検量線は ΔF = 55.8C + 15.2 Hz で、相関係数は 0.9990 であり、良好な直線関係が得られた。6 μM 鋼（II）溶液による 7 回の繰り返し測定の相対標準偏差は 1.1%、検出限界は 0.05 μM であった。また、0.1 〜1 μM の鋼（II）標準溶液（濃度 C μM）を 10 分間流すことによって得られた検量線（振動数変化量 ΔF, Hz）は ΔF = 152.5C + 29.7 Hz、相関係数は 0.9993 であり、より低濃度

Fig. 6 Frequency shift of PQC coated with chitosan (2 μg) in various pH of 60 mM ammonium salt buffer solution containing 6 μM Cu(II)

Other conditions as in Fig. 1.

Table 1 Frequency shifts on adsorption of various metal ions on twinned PQC coated by chitosan in 60 mM ammonium salt buffer solution

<table>
<thead>
<tr>
<th>Metal ions/μM</th>
<th>Without masking agent/Hz</th>
<th>1 mM Sodium citrate/Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 μM Cu(II)</td>
<td>390</td>
<td>221</td>
</tr>
<tr>
<td>60 μM Fe(III)</td>
<td>※</td>
<td>4</td>
</tr>
<tr>
<td>60 μM Pb(II)</td>
<td>※</td>
<td>10</td>
</tr>
<tr>
<td>600 μM Mn(II)</td>
<td>※</td>
<td>5</td>
</tr>
<tr>
<td>600 μM Al(III)</td>
<td>※</td>
<td>7</td>
</tr>
<tr>
<td>800 μM Ca(II)</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>800 μM Mg(II)</td>
<td>25</td>
<td>3</td>
</tr>
</tbody>
</table>

※ precipitate
の鉄(II)が測定できることができる。

4 結 語

溶液中では水晶振子数を液温や化学によって変化するので、これらのセンサーを取り扱う際には、これらの因子の影響を考慮すべきである。このため、双晶水晶振子が開発され、溶液中の振動数挙動を調査してきた。溶液の電気伝導度、密度、粘度及び液温に対する二つの水晶振子の振動数挙動を一致させるために、一番重要なことは二つの水晶振子と白金板電極との距離を等しくすることや、それぞれのソレーターの印加電圧にある。しかし、片方の水晶振子のみに膜を塗布すると、二つの水晶振子の表面状態に差（膜の親水性も塩性水性差）が生じる。振動数挙動を異にするので他方の水晶振子には目的物質を付着しない、同じ特性を持つほかの高分子を塗布することによって液性の影響が相殺できる。

キトサン膜はアンモニウム塩緩衝溶液中では、銅(II)に対して非常に大きな振動数変化量が得られ、液温と振動数変化量の関で直線関係を示した。したがって、検量線実行により銅(II)の選択的定量が可能であり、試料溶液を長時間流すことによってより低濃度の銅(II)の定量が期待される。

1999年5月、第60回および2001年6月、第62回分析化学討論会、及び2000年9月、第31回中部化学関係学会協会支部合併秋季大会にて一部発表

文 献

要 旨

本研究では別々に発振する二つの片面電極分離型水晶振子を用いて双晶水晶発振子を構成し、片方には機能膜としてキトサンを塗布して、溶液中の振動数挙動を考察すると共に銅(II)選択的センサーを開発した。キトサン塗布により生じる振動数変化は、もう片方には被検体を付着しない、溶液中で同様振動数挙動を持つ硝酸セロリニウムを塗布して制御した。双晶水晶発振子上に膜を塗布したときの振動数挙動を詳細に検討した結果、波性及び液温の影響を除去できることが分かった。被検体の付着によって二つの水晶発振子の間の振動数変化が生じる。キトサンを塗布した水晶発振子の銅(II)の選択的付着に対する最適条件を検討し、振動数変化量は銅(II)の濃度に比例した。一般に水晶振子上に物質が付着すると質量増加によって水晶発振子の振動数が減少するはずであるが、キトサン膜上の銅(II)の付着においては振動数が増加した。キトサン膜上に新たな生成物による水素結合により付着している水が追い出されたため振動数が増加したと考えられる。