アクティブマターの非線形ダイナミクス

太田 隆夫
東京大学大学院理学系研究科、豊田理化学研究所
obta@phys.s.u-tokyo.ac.jp

自己推進粒子の集団運動の研究は1995年にViezekらが提案したモデルが一つの契機となっている。かれらは定常で任意的方向に進む粒子を考え、個々の粒子はその周りの有限の範囲にいる粒子の平均の運動方向に動く相互作用を導入し、時々刻々、方向の向きに小さなノイズを与えた。ノイズの大きさを小さくしていくと、あるいは、ノイズを増加させると、ある閾値で粒子がランダムに動く状態から方向を揺るぐ状態への遷移が2次元空間でも起こる。こういったノイズは熱揺動ではなく動揺散逸関係も存在しないため、単純であるが非平衡系の集団ダイナミクスと状態変換の有用なモデルとして興味がもたらされた。このモデルの秩序状態は熱平衡相転移の秩序状態とは著しく異なる性質をもつ。その一つは、状態遷移点近傍の秩序状態では、すべての粒子が速度方向を揺るぐような一様状態は安定せず、大きなパックグラウンドの中に細長い秩序バンドが形成されそれが伝播することである。Viezekらの点粒子モデルではこのパンドは衝突したときの打ち残し成分が残りが残るが、大きさのある変形可能な粒子では伝播バンドは直接衝突においてあたかもソリトンのように個性を保つことが無いか。もう一つの特徴は、粒子が運動方向が変わらない場合、伝播バンド間の的な違いが存在する。Viezekらのモデルでの流体力学的方程式の微分方程式解を導入し、この異常挙動を予言している。

これらの進展をふまえて、非線形・非平衡系物理学としてのアクティブマター研究の今後の課題に言及する。
1. はじめに

自身の中で化学エネルギーなどを運動エネルギーに変換して自律的に動く物質・物体をアクティマターという。1) 動物、生体細胞、微生物、分子モーターなどの生命体がイメージしやすいが、非生物系でも、私の研究室のように、2) 界面エネルギーや軽エネルギーの不均一性に起因して動く物質がある。また、表面が均一でないコロイド粒子3) や金属微粒子4) は溶液中の表面活性の結果、動かすことができる。動きには並進、回転（自転）、変形、分裂などがあり、これらはどれも重要な研究テーマであるが、ここでは主として柔らかなアクティマターを取り上げ、並進と変形を考察の対象とする。

物質の性質を明らかにする方法として物理学では系に振動を与え、あるいは系を駆動してその応答をみるのが伝統的である。電場、磁場、光、剪断流、応力、力などによる構造変化やダイナミクスを調べてそのデータの意味を探ることによって、物理性が解明され、一方では非平衡統計力学が進展してきた。ある種の振動はアクティマターと似たダイナミクスを起こす場合がある。例えば、水などのテーブルを上下に振動させるとテーブル上の粒子はその形状によって並進や回転運動が生じる。5) しかし、本稿では駆動された系での力学エネルギーから別の力学エネルギーへの変換による、一見アクティマターの運動も考えられない駆動された系は外力を考慮したこれまでの力学の原理に定式化できるのに対し、アクティマターの自己進動運動を内部でのエネルギー変換まで見て体系的に表現する理論が発展途上であるという思いを強調しておく。

このように考えるとアクティマター研究の意義・目的が明確になる。物理を振り返ると、非平衡系の基本的な研究が始まった1970年頃では、対流系、結晶成長、化学反応がその主たる対象であった。1990年代に入るとナノスケールでの計測技術の進歩によって、分子モーターの実時間観察が可能になり5) そこで現れる非平衡状態はさらに微小スケールでのアクティマターの動的変化に高まり、それが今日まで続いている。6) 最近では、培地上を無理に回る生体細胞が発生する力の分布7) 生細胞内の化学变化の可視化、8) 組織形成のための細胞の集団運動9) の精密な実験が行われている。非生物系においても化学反応する油滴の自走12)13)15)19) や球型に閉じた脂質2重膜の自己複製18)19) が実証されているように、非平衡系研究は現在の黎明期には存在しなかったアクティマターの運動の仕組みを解明すること、非線形ダイナミクスの新たな重要なテーマをなっている。工業的にはマイクロマシンや医学・薬学への応用に関係が高まっている。また、その集団の示す不対称型は平衡状態での相転移では見られないと考えられる状態があることが明らかになりつつある。アクティマターの研究は新しい知見をもたらし、非線形非平衡系のわがわが理解を大きく進展させようとしている。14)15)

2. アクティマターの例

自己進動する対象としてバクテリアや生体細胞は納得しやすい。しかし、一方では、生体の複雑さ故に第一原理の物理的構造は容易ではない。ここでは非生物系のアクティマターの例を二つ挙げ、次の節でその定式化を概説する。

一つは興奮因子と抑制因子が相互作用する反応拡散系である。この系は、時間周期構造（イェンタリング，Turingパターン）、時間振動、てんぱるパルス波などの非平衡現象の研究に使われてきた。KrischerとMikhailovは1994年に、興奮因子をu、抑制因子をvとして以下の反応拡散方程式を空間2次元で数値計算した。20)

\[
\begin{align*}
\frac{\partial u}{\partial t} &= e^2 v^2 u + f(u, v) - v, \\
\frac{\partial v}{\partial t} &= D v^2 u + u - \alpha v.
\end{align*}
\]

ここで\(\theta(u,v) = -u + \theta(u-p(v,u))\)、\(\theta(x) = x > 0 \text{とする} \Rightarrow \theta(x) = 0\)のステップ関数である。\(p(v,u)\)にはグローバルカップリング

\[p' = p_0 + p_0 \int [(u + v) + W]
\]

がある。\(r, D, \gamma, p_0, \gamma, W\)は正定数である。\(\gamma\)が小さい極限では興奮領域で興奮領域の境界（界面）は急な。\(p_1\)を十分大きくすると式4)はカグアイ方程式でゼロの束縛条件になり、興奮領域の面積3次元では体積が時間変化しなくなることを意味する。すなわち、実際の興奮領域（ドメイン）は拡がることも交易することもできない。動くとすれば、体積を保存した変形と並進運動のみが可能となる。

数値計算によると、\(r\)が大きいときは拡散した動かない円形興奮ドメインが安定であるが、\(\gamma\)の値がある閾値より小さいになると動かないドメインから一安定度で並進運動するドメインへの連続分裂が起こる。それらのドメインの形状を図1に示す。図では顕著ではないが、分岐点から離れると、並進速度が大きいドメインは速度と垂直な方向に伸びることがわかる。分岐が起こる理由は以下のよう理解できる。図1の右図のように、興奮因子の領域が少し右にずれたとしよう。その先頭では抑制因子が少なくなくなる。式2)の右辺第2項による抑制因子の増加が十分遅ければ、興奮因子はさらに増加する。ドメインの後方ではその逆のことが起こる。すなわち、興奮因子の時間スケールに比べて抑制因子の時間変化がゆっくりしている。つまり、\(r\)が小さいと、並進運動を止められなくなる。

もう一つの例として油滴の自走実験を紹介する。21) ベンザノール水溶液に浮かんだベンザノール油滴はその体積が十分小さいとき直進運動する。図2は右から左に動いて壁で反射し、向きを変えて右下に移動している油滴の1秒ごとのスナップショットである。この自己進動の起源は

©2015 日本物理学会

日本物理学会誌 Vol. 70, No. 5, 2015

NII-Electronic Library Service
一方、生体細胞ではいろいろな内部要因があるため、横伸長の原因を一言で説明するのは難しい。

3. 自己推進粒子单一運動の理論
前節で述べた動かない粒子から一定速度で動く粒子への分岐を表現する、系の等方性を満たすもっとも簡単なモデルは重ねの速度を
\[
\mathbf{v} = \gamma \mathbf{v}_0 - \gamma' \mathbf{v}_n
\]
であり、簡単のため、質量と3次元の係数を1にしている。

\[
\gamma = \frac{v}{\gamma_0} \quad \gamma' = \frac{v'}{\gamma_0}
\]

ここで、\(v\)は粒子の速度を表し、\(\gamma_0\)は安定解の速度である。方程式 (5) に平均ゼロ、異なる時刻間では相関のないガウス分布に従うノイズ項を加えた場合

前節では自走速度が山形がカップリングしている自己推進粒子を紹介した。また、微生物では「泳ぐ」場合にせよ、培地を「進む」場合にせよ、並進と変形には強い結合がある。

従って、粒子の変形を考慮するようにモデル方程式(5)をを拡張しよう。空気2次元で考え、重心から粒子表面までの距離 \(R(\theta)\) を定義する。

\[
R(\theta) = R_0 + \delta R(\theta)
\]

本節に注目して、\(\theta\)は角度標と着目している表面の点の間の角度である。\(R_0\)は粒子が円のときの半径である。

変形は大きくないとしてフーリエ級数展開

\[
\delta R(\theta) = \sum_{n=0}^{\infty} c_n \cos n\theta
\]

を行い、係数 \(c_n\)の発展方程式を決めれば粒子の並進運動と変形が記述できる。以下では粒子の面積(3次元では体積)は一定であると仮定する。フーリエ展開は3次元で面積分布関数による展開に置き換えなければならず、方程式の表現が空間の次元に依存し不便である。各フーリエモードに対応して \(n\)階の対称テンソルを以下のように導入しよう。第2モードに対しては

\[
S_{\theta\phi} = \delta_2 \left(N_n \delta_{n,2} - \frac{\delta_{n,2}}{2} N_2 \right)
\]

ここに、\(\delta_2\)は正定数、\(N_n\)は円形変形の長軸方向の単位ベクトルである。第3モードに対しては

\[
U_{\theta\phi} = \frac{4\delta_3}{3} \sum_{n=1,2} N_1(n) N_2(n) N_1(n)
\]

解説 アクティブマターの非線形ダイナミクス
単位ベクトル \(\mathbf{N}^{(n)} \) は、フーリエ係数 \(c_k \) を \(c_5 = \delta e^{-2\pi k} \) とおいて

\[
\mathbf{N}^{(n)} = \left(\cos \left(\phi + \frac{(n-1)\pi}{3} \right), \sin \left(\phi + \frac{(n-1)\pi}{3} \right) \right)
\]

(\(n = 1, 2, 3 \)).

(10)

で定義されている。これらのテンソルは容易に3次元一般的でできる。22)

重なる速度ベクトルとこれらのテンソルの対称性から、可能な組み合わせを考えて展開方程式を構成するのは容易である。2次元では次のようになる。23, 24)

\[
\frac{d}{dt} v_x = \gamma v_x - v_x^2 - a_i S_{xy} v_y ,
\]

(11)

\[
\frac{d}{dt} S_{xy} = -\kappa S_{xy} + b_1 \left(v_x v_y - \frac{1}{2} v_x^2 \delta_{xy} \right) + b_2 U_{xy} v_y ,
\]

(12)

\[
\frac{d}{dt} U_{xy} = -\kappa U_{xy} + d_1 \left[v_x v_y + \frac{v_x}{4} \left(\delta_{xy} v_x + \delta_{xy} v_y + \delta_{xy} v_x + \delta_{xy} v_y \right) \right] + \frac{d_2}{3} \left[S_{xy} v_x + S_{xy} v_y + S_{xy} v_z \right] - \frac{v_y}{2} \left(S_{xy} v_x + S_{xy} v_y + S_{xy} v_z \right) .
\]

(13)

繰り返された添字については和をとる。係数 \(a_i, b_i, d_i \) は定数。 \(\kappa \) と \(\kappa_3 \) は正定数とする。3次元の非線形まで考慮するとしても、すべて書き下すと複雑になるのでいくつかの項は省略している。高次のモードと高次の非線形項を無視する近似では動かない粒子から動く粒子への分岐点近傍であれば正当化されることを強調しておくことは、連続分岐点の近く \((0 < \gamma < 1)\) では速度は任意に小さい値がとれる。一方、常定定常状態では方程式(12)から \(S \sim O(v^2) \)、方程式(13)から \(U \sim O(v^3) \) であることがわかる。このように高次モードは対称的に速度の高次微分量に依存している。

方程式(12)の係数 \(b_i \) の符号は粒子が速度方向に伸びるか、それに垂直方向に伸びるかを決める重要な役割をもっている。

\[
\Psi = -b_i v_x v_y S_{xy} = -b_i \left(v \cdot \mathbf{N}^3 \right)^2 - v^2
\]

(14)

に表れ、\(b_i > 0 \)のとき \(v \) と \(\mathbf{N} \) が平行、\(b_i < 0 \)のときは垂直であるが \(\Psi \) は最小値をとる。

方程式(11)，(12)，(13)を数値的に解くと図4の動的相図を得る。変形の線和率 \(\kappa_2 \) と \(\kappa_3 \) を変化させ、それ以外のパラメータは固定値に固定する。線和率が大きければ四角で示した領域がつながる。粒子が固定されている直線運動が安定である。線和率を下げた丸の領域では直線運動が不安定化し、軌跡は円となる。23) \(\kappa_3 \) の値をさらに小さく（三角）するとジグザグ運動が現れ、\(\kappa_2 \) の値を小さく（星）と運動はカオスになる。カオス軌道のLyapunov指数を数値的に計算してそれが正であることを確認している。24) これらの運動は図5に示してある。

図4 変形の緩和率 \(\kappa_2 \) と \(\kappa_3 \) を変えたときの相図。24) 四角の領域では直線運動。丸の領域では固定された円軌道を取る。三角の領域ではジグザグ運動。星の領域ではカオス運動。ハハの領域では数値不安定性のため明確なことが言えない。それぞれの運動は図5に示してある。

2次元までの柔らかな粒子の自走・変形ダイナミクスは周期境界条件のもとでの空間1次元系の散逸波のダイナミクスと数学的には同等である。後者については古い研究があり、可能な分岐が詳細に調べられている。25, 26)（ただし、第3モード、\(U_{xy} \)は考慮していない。）しかし、そこで結果の方で1次元波を意識したものであり、自己推進粒子への解釈やその認知はない。一方、方程式(11)，(12)，(13)は数値的な変数で3次元粒子において適用できるが、27) そのとき、単純な周期境界条件下での2次元波との同等性は、もちろん、成立立たない。

方程式(11)，(12)，(13)はベクトルとテンソルの可能な組み合わせから現象論的に書き下したものなのでその形は普適性をもつが、係数を決定するためには対象をもっともしっかりなければならな。たとえば、反応拡散方程式(1)，(2)からこれらを導出できるであろうか。場の量である \(\alpha \) と \(\beta \) に対する偏微分方程式で系を支配する有限の自由度の常微分方程式を出すのは自由度の減衰であり、この場合は界

日本物理学会誌 Vol. 70, No. 5, 2015

©2015 日本物理学会
面ダイナミクス法を適用することができる。方程式 (1) の $e \to 0$ 极限で特異摂動法を使い、興奮ドメインの表面の運動方程式を得ることができ、そこから (11), (12), (13) の係数が決定される。その結果、例えば、係数 b_i は負であることが分か、理論と数値シミュレーションの結果が合致する。Marangoni 効果による油滴の自走については、水・油の二成分相分離系に油と反応して生成される第3成分を仮定し、界面ダイナミクス法を3次元流体系に適用して方程式 (11), (12), (13) の係数を決めることができると、界面張力を第3成分の濃度の増加関数と設定すれば、油滴が動き出す監視が存在し、動く油滴の形状は図2の実験と整合する。30)

モデル方程式 (11), (12), (13) は重心を動くとそれが粒子の変形を引き起こす現象を念頭において構成された。しかし、微生物や生体細胞の運動は、明らかに、変形が重心の移动を生み出している。特に、「泳ぐ」場合は周期的な変形（顕微鏡や顕微鏡ではなく細胞の形を変化させる場合をユーレカ運動という31）によって推進しており、変形と並進の運動方程式を適応して用いる必要がある。

Misbah たちは内外を Newton 流体で満たされた閉じた膜に時間変化する力が発生する3次元モデルを考えた。22 周りの液体は Newton-Stokes 方程式に従う。

$$0 = \frac{\partial u_i}{\partial t} + (u_i \nabla)u_i = -\nabla p + f_m(r, t) + \eta \nabla^2 u_i \quad (15)$$

微生物が泳ぐとき Reynolds 数は 10^4 程度なので式 (15) の左辺をゼロとおき、（小さいけれども有限の Reynolds 数の効果については文献 33 とその引用文献を参照されたい。)p は非圧縮条件 $\nabla p = 0$ から求める。η は粘性係数である。$f_m(r, t)$ は膜面から液体が受ける力であり、膜面でのみ有限の値をもつ。膜で閉まれた体積 V と膜面の面積 A は一定であると仮定する。側面と底の体積を表すパラメータである。$f_m(r, t)$ は有限の部分からなる。一つは膜を変形させるアクティブな力$f_m^{(a)}(a)$ である。a は膜上での位置を指す。$n(a)$ はその単位面積ベクトルである。もう一つは膜の非圧縮性（面積保存）から生じる力$f_m^{(n)}(a)$ である。

繊毛の運動によって泳ぐ細胞膜面の変形を考えない理論については文献 33 とその引用文献で最近の発展については文献 35, 36 を参照されたい。また、ヘリカルな形をしたパラテリア Spiroplasma の泳動については文献 37 に詳しい研究がある。

Misbah たちは、簡単であるため、閉じた膜が x 軸に沿って流動し変形は軸対称と仮定した。そのため、球からのおすれは球面調和関数 $Y_m(a)$ で $m = 0$ とおき

$$\delta R(a, t) = \sum_{l} \zeta_l(t) Y_l(a) \quad (16)$$

と展開される。$f_m^{(a)}(a)$ と $f_m^{(n)}(a)$ についても同様の展開を行う。力$f_m^{(a)}$ と$f_m^{(n)}$ が与えられているとして Stokes 近似の方程式（Stokes 方程式） (15) を解き、膜面速度とそこでの流体の速度が等しいとして $\bar{G} (\geq 2)$ に対する方程式を得る。変形の非線形形を無視すると

$$\frac{d \zeta_l(t)}{dt} = \Phi_l \left(f_m^{(a)}(b_l t) - \frac{a}{\rho_0} \zeta_l(t) \right) \quad (17)$$

係数 a, Φ_l は正である。"泳ぐ" 場合はアクティブな力 $f_m^{(a)}$ は時間の周期関数であり、その関数形は今のモデルでは人工的に、あるいは、実験から決める他ない。$a_0(t)$ は膜面積一定の条件

$$\sum_{l=2}^{\infty} 2a_0(l) = \Gamma \quad (18)$$

から決定される。閉じた膜の重心が速度 $d\zeta(t)/dt$ で動いているとして方程式 (15) を解き、膜面での力のテンソルを求める。膜にかかる摩擦力も考慮してすべての力の和がゼロである条件から、変形のモード全体で重心の変形の数

$$\frac{d \zeta_l(t)}{dt} = \Phi_l \left(f_m^{(a)}(b_l t) - \nu_0 \zeta_l(t) \right) \quad (19)$$

をえる。Φ_l, ν_0 は正定数である。第3モードまでを考えるときは、式 (8), (9) のテンソルを式 (19) を次のよう書くことができる。

$$v_n = \frac{\rho_0}{\nu_0} \frac{d S_n}{dt} U_{n}\sigma(t) = \zeta_n(t) \frac{d U_{n}(t)}{dt} \quad (20)$$

少し長い議論となったが、最終結果 (19) は興味深い構造をしている。まず、並進運動はモード $l = 1$ の変形であるから、$l \geq 1$ のモードのみが2次の非線形解を可能であることに注意しよう。このことはテンソル表現の式 (20) では明白である。もし、方程式 (19) の右辺に時間微分がない、$\zeta_l(t) \zeta_{l+1}(t)$ の形であれば、時間変化しない変形であっても重心が動くことになり、"泳ぐ" の定義に反する。もし、時間微分が関係にあり、$(\zeta_{l}(t)/dt) \zeta_{l+1}(t)$ の形であれば、一方のモードが時間変化せず、他方が時間変化しても重心はまったく動かないことになり、非物理的である。さらに、方程式 (19) において、たとえば、$\zeta_l=0$, $\zeta_{l+1}(t)$ が周期関数のとき重心は1周期後、元の位置にもどってしまう。すなわち、平均として有限の推進を得るためにはアクティブな力の関数かモードが位相をもって周期変化することが必要である。このことは、いわゆる Purcell のモデル30 [Stokes 方程式に従う流体中での周期的変形において一連の形の変化が時間に連れたとしたときの形の変化と同一である]を変形または平均して重心は動かない30] の反映である。

上に述べたように式 (19) で右辺に時間微分がない場合、すなわち、式 (20) の表現で

$$v_n = \gamma_0 \sigma_n(t) U_{n}(t) \quad (21)$$

となる場合は"泳動"ではない。γ_0 は定数。しかし、式 (21) は図3のクラゲサイド細胞のように、Purcell の定理の及ばない培地を用いる"泳動"する生体細胞には適用できることに注意しておこう。
方程式(19)の左辺には時間の2階微分項が現れない。これは注目している変数が散の変形とStokes方程式に従う流体速度のみであるためである。この節の前半で述べたMarangoni効果による流体の自走でも流体にはStokes方程式を使うのであるが重心の方程式(11)は左辺の慣性項をもつ。これは表面張力に影響を与える第3成分の時間変化が面の動きに比べて遅いとき、界面の離れた2点間において第3成分を媒介した時間遅れ相互作用が働くためである。

4. 自己推進粒子の集団運動

相互作用する自己推進粒子の集団運動の本格的研究は1995年にVicsekらが導入したモデルが契機となった。[40,41] これらは自己粒子の位置と速度に関する時間差分の方程式を考えた。2次元空間で粒子の位置を\(x(t) \)、速度を\(\mathbf{v}(t) = v_0 \mathbf{r} \)（\(v_0 \)は定数）として

\[
\begin{align*}
\theta(t + 1) &= \theta(t) + \Delta \theta(t), \\
\omega(t + 1) &= \omega(t) + \Delta \omega(t)
\end{align*}
\]

とおく、\(\langle \theta(t) \rangle \)、\(\langle \omega(t) \rangle \)はそれぞれ角の平均値である。\(\Delta \theta(t) = \Delta \omega(t) \)は\(\omega = \text{定数} \)として元の場の平均を示している。この転移を連続転移と不連続転移に分けて研究するが、モデル方程式 (22), (23)の十分大きな系での数値シミュレーションによって、図6で示しているように、不連続転移であるということに落ち着いているようである。[42] なお、Vicsekらのモデルの提案とは同じように、粒子の速度と角の向きを変数としたモデルが導入され、粒子間相互作用を取り入れて集団運動と時間の変化が調べられている。[43]

点粒子の自己推進モデル (22), (23) は思い切った単純化をしている。魚、魚、細菌などは有限の大きさがあり、衝突を避けるように運動しているのは明らかである。また、動きによって周りの空気や水が乱され、それが他の個体の運動に影響を与えるであろう。Vicsekらのモデルではこのような排除体積効果や流体力学の相互作用は考慮されていないが、理想化しているために、極端な大きさ（粒子数の多い）系での数値シミュレーションが容易に行える利点があり、非平衡系での動的秩序の基本的性質を探る有用なモデルとして研究されてきた。

自己推進粒子系の秩序現象は熱平衡系の相転移ではみられないいくつかの性質がある。その一つが伝播するバンド構造の出現である。[42] ノイズ強度を上げる秩序現象が不安定化する分岐点の近傍では系全体が一様な秩序状態を不安定で、密度が小さい無秩序な領域の中では密度が大きい帯状の秩序現象が自発的に形成され伝播する。その中で粒子は任意に方向を動いている。図7はその一例である。[43] 周期境界条件を課しているため帯状に直線的なバンドが形成されており、その意味ではバンドの形は有秩序なサイクルである。非平衡系のマクロなパターン形成では系の有限性はむしろ一般的である。

初期条件として個々の粒子にランダムな運動を与え、十分時間がたったところで図7の動的非一様構造が自然に形成される。バンドが形成される途中ではあちこちの方向に伝播するバンドが生じ、それが衝突を共に、図7の場合では右向きの2つのバンドが最終的に生き残ったことを意味している。つまり、Vicsekらのモデルでこの2つのバンドは衝突によって個体を保存することはなく、また、対消滅する訳でもない。大きなバンドが小さいバンドを凌駕する傾向にある。[43] 一旦、形成された孤立バンドは有限の時間で壊れることはない。

上に述べたようにVicsekらのモデルは非常に単純化している。実験的な条件を考慮したとき伝播するバンドは存在できるのだろうか。つまり、伝播するバンドは構造安定
5. 集団運動の統計的性質

Vicsekらのモデルでは軸方向から十分離れた理想状態では速度の配向は空間的に一様である。しかし、非平衡系では存在しない興味深い統計的振る舞いがみられる。計算機シミュレーションによる結果、図9(a)は粒子数の分散が

\[
\langle (dn)^2 \rangle \sim \langle n \rangle^\mu
\]

\(\mu = 1.6\)となることを示している。図9(b)は関係図を観測する領域の大きさを大きくしたときに、その中に含まれる平均粒子数\(\langle n \rangle\)と粒子数の振幅が\(\Delta n\)を測定することによって得られた。ノーマルな振幅\(\Delta n \sim n^{1/2}\)に比べて大きな指数\(\mu = 1\)であることを「密度の相関長さ」という。\(\mu = 1\)関係する物理量として平均の配向方向に垂直な方
向への粒子の平均2乗変位

\[
(\Delta x_L)^2 = \langle (x_L^2(t) - x_L^2(0))^2 \rangle \sim t^n \tag{26}
\]
がある。図9(b)では\(\partial_t \lambda \Delta x_L\)に、\(\tau \sim t\)に対応しており、傾きから2\(n = 3/2\)、4\(n = 3/2\)となり超拡散型\(n > 1\)であることがわかります。

これらの異常をVicsekらのモデルから直接、導出することはできない。TonerとTuはVicsekらのモデルから粗視化した流体力学的方程式を象徴論的に書き下し、繰り込み群による詳細な解析を行った。\(^{52,53}\)粒子の局所密度\(\rho\)は連続の方程式に従う。

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \tag{27}
\]
局所速度\(\mathbf{v}\)に対してはNavier-Stokes方程式に似た方程式を仮定する。\(^{52}\)

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) + \lambda_1 (\rho \nabla \rho) \rho + \lambda_2 (\nabla \rho) \rho
= h_1 (\rho - h_2 \rho) \rho - g \nabla \rho
+ D_2 \nabla \rho + D_1 \nabla^2 \rho + \rho_0 \tag{28}
\]
\(\lambda_1, \lambda_2, h_1, h_2, D_1, D_2\)は正の定数である。第2項は粒子数が自己推進することを表わす。第2項最後の項は平衡状態のガウス分布に従うランダムノイズである。

\[
\langle \rho_x (r, t) \rho_y (r', t) \rangle = \Delta \delta (r - r') \delta (t - t') \tag{29}
\]
\(\Delta\)は正定数である。方程式(28)では以下の議論で重要でない項を省略としてある。自己推進粒子系はGalilei変換不変でないため、一般に\(\lambda_1 \neq 0\)であり、\(\lambda_2 \neq 0\)である。また、式(29)の2次項は運動量密度が保存する場合は\(\delta (r - r')\)ではなく\(\rho \nabla \rho \delta (r - r')\)でなければならない。しかし、Vicsekらのモデルでは個々の粒子の並進速度の絶対値が決まっており、さらに、ノイズは粒子の内部自由度に起因していると解釈すれば無粒子運動かが成立しない。これら二つの通常のNavier-Stokes方程式との重要な違いである。Vicsekらのモデルでは無粒子運動かではなく鳥や魚の運動も想定しているので、方程式(28)で Stokes近似は行えない。

TonerとTuは秩序状態での性質を調べた。

\[
p = \langle p \rangle + p^2 \tag{30}
\]
とおき以下の解析を行った。\(^{52,53}\)方程式(28)より、\(\langle p \rangle\)の絶対値は\(\sqrt{h_1 h_2} \)である。\(p^2\)は\(\langle p \rangle\)に平行な\(P^2\)は垂直なノイズ成分である。\(\langle p \rangle \neq 0\)の存在は系の回転対称性を破るため、\(P^2\)はGoldstoneモードとなる、すなわち、\(P^2\)は波数ゼロの極限で有限の緩和時をもつに反し、\(p^2\)は緩和がほとんど速くなる。このように、\(P^2\)と保有量\(P\)が重要な違い自由度である。密度の平均を\(\rho_0\)として\(\delta \rho = \rho - \rho_0\)と\(P^2\)の線形の範囲で、フーリエ成分の平均は

\[
\langle P^2 \rangle \sim \frac{1}{q^2} \tag{31}
\]
となる。これは\(P^2\)がGoldstoneモードであることによる。波数ベクトルも平行と垂直成分に分け、\(q_i \ll q_j\)において

\[
C_{P^2} (q) = \langle \delta P_i \delta P_j \rangle - \frac{1}{q^2} \tag{32}
\]
密度の相関は波数ゼロの極限で圧縮率であり、熱平衡系では一般には有限である。式(32)で無限大（あるいは、空間相関が長距離）になるのはノイズが式(29)のように保存則を満たさないことに関連しており、観察した非平衡系では驚くべきことではない。

相関(31)は2次元実空間では系のサイズを\(L\)として

\[
\langle P^2 (r) \rangle - L^2 \tag{33}
\]
\(\chi = 0\)となる。正確には\(\ln L\)であり、系のサイズが大きな極限では揺ぎ(33)は発散する。このことは、熱平衡系で周知の事実。[短距離相互作用する2次元熱平衡系で連続対称性が破れて生じる長距離秩序状態は有限温度で安定でない]と同様に録である。しかし、自己推進粒子群の非線形性は方程式(28)の\(\lambda_1, \lambda_2, h_2\)項であり、たとえば、磁性XYモデルの非線形性とはまったく異なる。TonerとTuは方程式(27)、(28)に繰り込み群の方法を適用した特異性の指数を計算した。2次元では\(P^2\)が1成分のスカラーよ図こと、運動量密度のランダム力が保存則を満たさないことなどから指数を厳密に得ることができ、例えば、\(\chi = -1/5\)になる。\(^{52,53}\) \(\chi\)が負であるため、揺ぎ(33)は\(L\)無限大で発散せず、配向が揺れる秩序は安定である。このことをより的確に理解するのは難しいが、概念的には次のようえてきえる。ある粒子に着目したとき周りの粒子は時間とともに離れることもあれば遠くの粒子が近づくこともある。この過程で情報（向き）のやりとりができることが有効相互作用が遠くにある。\(^{31}\)あるいは、粒子の移動、交換は離れた2点の配向揺らぎ間を抑制する効果をもたらす。\(^{52,53}\)密度相関(32)も非線形効果によって修正を受ける。

\[
C_{P^2} (q) = \frac{1}{q^{4+\chi}} \tag{34}
\]
これから粒子密度揺らぎが

\[
\langle \langle \partial P \partial P \rangle \rangle = L^2 \int_0^L C_{P^2} (q) \sim L^{2+6\chi} \sim \rho^{8\chi} \tag{35}
\]
と得られる。同様な解析で横方向の変位の平均2乗は

\[
\delta x_i^2 (t) = \langle (x_i^2 (t) - x_i^2 (0))^2 \rangle \sim t^{\chi} \tag{36}
\]
となる。\(^{53}\)これらは図9に示すVicsekらのモデルの計算機シミュレーションの結果と一致する。

粗視化した場方程式で一様秩序状態が移転点近傍では不安定化すること。また、そこでは伝播するパルク解があることは調べられているが、\(^{54}\)その安定性、実現におけるソリトン的挙動などの研究はなく、アクティブマターの流体力学的アプローチの総説として文献55がある。文献56

©2015日本物理学会
では自己推進粒子間の流体力学的相互作用が取り入れられている。

6. おわりに
自己推進粒子ダイナミクスの最近の進展のうち、個別粒子では変形と並進の合計、粒子集団では Vicsek らのモデルと粒子の変形を考慮したモデルについて解説した。これら以外にも重要な進展は数多くあるのでそれは他に別の機会に譲り、以下では今後の課題を挙げておこう。

(1) 機動散逸関係が成立しない非平衡系の Langevin 方程式（例えば、方程式 (28)）の有用性を否定するものではないが、それをミクロに基礎づける理論を構築する必要がある。

(2) 変形と重心運動のカップルにより、1 個の自己推進粒子でも図 5(d) のようにオッズ運動が可能である。並進とスピンの結合でもオッズが現れる。オッズ運動する自己推進粒子の（異常）拡散の定式化は細胞運動の効率も関

(3) ここでは述べなかったが、外力下のアクティブラバー（すなわち、駆動されたアクティブラバー）は単に非線形ダイナミクスのみならず、真に非平衡系の输送問題である。生きているバクテリアの分散系に構造を変える速度を上げたときの粘性率については調べられている。オッズ系をアクティブラバーに自由度を導入する外力への応答のクロス効果は非平衡系を特徴づける指標の候補である。

(4) 圖 8 の伝播するバンドのソリトン的振動の舞いは、予想外の現象である。散逸系における波のソリトン的振動舞いについては、金属表面の吸着分子の密度波の包絡する密度波などの関係性を図 6 で示すことができる。解析理論は手付かずである。

(5) 柔らかい自己推進粒子モデル、方程式 (11), (12), (13) は自走する油滴に適用できるとともに、定性的には生体細胞の動きに似た運動を再現できる。その意味で普適な一面をもっているが、一方では生物・非生物を区別できないことを意味している。構造生物学（systems biology）のような第一原理的方法によらず、生物と非生物を分けるシンプルな数理は存在するのだろうか？

共同研究者の多羅間充規氏、および山中貞人氏に感謝します。本稿に目を通し有益なコメントをくださった佐野雅己氏と北畠裕之氏に心より礼申し上げます。

著者紹介
太田望弘氏：専門はソフトマター物理学、非線形物理学、および非平衡統計力学。

(2014年10月3日原稿受付)