1. はじめに
本稿を読まれる皆さんにとって、フランスとはどのような国でしょうか？この国を書物や映画でしか知らなかった当時の私の心にあったのは、中央政府が摂る長い歴史を持ちながら、シテネマグラフの創生やエッフェル塔の建設によって近代から現代への変容を体験した、いわば古いのに常に新しい国でした。矛盾が素直に同居する複雑なこの国の心たちは、今も基本的には当初の印象どおりのように思います。投稿で紹介させて頂く国立科学研究センター（Centre National de Recherches Scientifiques; CNRS）もそんな観にふさわしい複雑な組織、人事構造を持っています。

2. オルセイ原子核研究所
私がオルセイ原子核研究所（IPN）に研究員として着任したのは、2012年1月のことです。その拠点オルセイは、パリから南へ鉄道で30分、イヴェットという名の小河が穏やかに流れている間にあります。戦後しばらくしてこの地に移り住んだ私の大家さんによれば、イヴェット河を中心とした溪谷は古くからパリに住む富裕層の保養地として栄えていました。この開静な谷に大きな軸機が訪れたのは1950年代です。フレデリック・ジオオとイレース・キュリーの進めていた次世代シンコロ・サイクロトロン計画が誘致されたことを端緒とします。IPNはこの50年代核物理の次世代計画に併せて創設されました。以来、オルセイの谷にはパリ大学が、私たちがプラトーと呼ぶ丘にはCEAやポリテクニークなどの高等教育機関、研究所が設立あるいは移管され、この一帯はフランスを代表する基礎科学研究拠点へ成長しました。創立以来、IPNは多数の著名な核物理学者、行政担当者を輩出してきました。本誌上でも特集4のあった、湯沢年少先生もその一人です。21世紀のIPNを牽引するのは、短寿命核の物理学者。2つのプロジェクトが走っています。一つはALTOと呼ばれる短寿命核施設です。ALTOは、大規模電子線によりラウラ核分裂を誘導することで、短寿命核を効率的に生成するいわゆるISOL型と呼ばれる施設で、ベータ崩壊研究が推進されています。もう一つは、SPIRAL2計画です。低地ノルマンディ圏の首都カンにある研究所GANILに建設されようとしているこの施設は、現在のビーム強度を一桁から二桁向上することを目指す野心的な計画です。IPNは加速共鳴空洞の建設と分光検出器の開発に携わっています。

3. CNRS
以上のように、私はIPNに奉職する研究者です。しかしながら、その正式な身分を問われたなら、私の答えは「CNRSの研究員」となります。それでは、このCNRSという、フランス人ならばおそらく誰もが一度は耳にしたことがある組織は一体何なのでしょうか。
公式サイトの言葉を借りれば、CNRSは、フランス教育・研究省が管轄する基礎科学、技術の公立研究機関です。その規模は非常に大きく、2015年3月時点で、総職員数3万3千人、うちパーソナリスト職員2万5千人※を擁し、年間予算は33億ユーロにのぼります。CNRSの研究者は、大きくセクションとグレードにより分類されます。まずセクションですが、これは研究分野に相当します。「科学研究」という名前から誤解されがちですが、CNRSのカバーするのは、自然科学を含みます。計44のセクションは、科学技術系分野はもちろん、情報、工学、政治、経済、哲学、考古学など、およそ基礎学間に分類される分野を網羅しています。私たち核物理研究者は、セクション01（相互作用、粒子、原子核、宇宙）に属します。CNRS研究員の身分を特徴づける、もう一つの概念は、グレードつまり階級です。私たちは、シニアポストであるDirecteur de Recherche（DR）と若手ポストであるCharge de Recherche（CR）のどちらかに属し、それぞれ一、二級という等級を持ちます。例えば、私はエンテリウードグレードである二級CR（通称CR2）です。一般的には、30代半ばにCR2からCR1へと進み、研究指導資格（Habilitation à Diriger des Recherches; HDR）を取得後DRに昇進することが可能となります。ここで重要なのは、こうした身分は、所属研究所有何にかかわらず、CNRSによって直接定義、保証されている点です。例えば私の手元にある給与明細はCNRSの発行であり、IPNに関してはその名さえ記載されていません。CNRSによる人事は、あるグレードの職員をフランス全土に散在する1,100近いunité（ユニテ）の一つに配属（アフェクト）

※ Commissariat à l'énergie atomique et aux énergies alternatives（原子力・代替エネルギー庁）
※4 小特集：湯沢年子生誕100年：日本物理学会誌第46巻第12号、先生はコロージュ・ド・フランスから創立者いないIPNへと移管された後、シンコロ・サイクロトロンの構造詳細を知るための分光研究に従事されました。この研究者は、IPN初代にキュリー研究所へと移管され、陽子線医療の基幹装置として現在でも使用されています。
4. 垂直的集権 vs. 水平的流動

以上のようにして、私たちはユニテとCNRSという二つの名の下に研究を進めています。前者は、日常的な研究の場を与える具体的かつ垂直的な存在、後者は私たちを中央政府と結びつけることで分身と待遇を保証します。CNRSが設立されたのは第三共和制下の1939年のことですが、それを国内最大級の基礎研究機関へと発展させたのは、戦後の第五共和政府だったようです。その堅固な集権構造に優れた点が多いのも事実です。例えば、CNRSワインドシステムを設けることにより、組織の効率化が図られています。日常的な例をあげれば、出張や休暇などの各種申告、年次報告の提出、旅行機や宿泊施設の予約などは全てCNRSの管理するシステムで行えます。核物理実験の分野では、検出器や読出し回路など比較的大型の海外輸送が必要になることがあるが、CNRSの場合は場合により近いULisseという部門が一括して担当しています。

このような観点からでの強力な力場を持つ構造を相補するのでは、他機関との連携と人的流動です。私たの、二つのシステムがCNRSのこうした水平的な力を支えているように見えます。一つは、先ほど触れたユニテという概念です。CNRSのユニテの大半は、より正確にはUnite Mixte de Recherche (UMR)と定義されています。ここで重要なのは、mixte（混成）です。このUMRという名を冠した研究所は、CNRSとCNRS外の研究機関、高等学校機関、特に大学が共同で統治しています。例えばIPNの場合、パリ南大学との契約のもと、UMR8608という名を与えられています。連携の焦点の一つは、教育の共同運営と考えられます。CNRSはあくまでプロの研究者集団なので、その組織内に学生は存在しません。一方、大学は学位を授けることが、最先端の研究環境が必要となります。UMRという行政上の実体は、こうした別組織に属する組織のダイナミックな橋渡しを可能にします。つまり、CNRS側は、HDRを有する研究員が大学に所属する学生を指導することで、次世代を担う人材を育てていくことが可能となり、大学側は学位にふさわしい研究環境に学生を送ることができるのでです。また、大学側の教員がUMRの研究者にオフィスを持ち、研究することも可能となります。逆に、CNRSの研究員がHDRを授けるのは大学であり、その審査にあたっては、CNRS研究員は一時的に大学に籍をおくことになります。二つ目は、人事異動（ミュータション）の自由度です。CNRSの職員は、比較的自由に他のCNRS系ユニテに籍を置けることが許されています。これも重要なのは、籍の前後で現在のステイタスが継続される点です。これは既に述べたように職員の身分と待遇は所属研究所によらず保証されているからです。こうした自由度が、研究所間の異動の数をさげ、CNRS内部における人力の流動性を大きく高めています。フランスらしい労働者の権利の強さを象徴する一例と考える人も多いですが、私はむしろ中央集権構造に水平的ダイナミックスを与えようとする研究者のクールな使い振りを感じます。

5. Concours（コンクール）

こうしたCNRSの屋台骨は、コンクール、すなわち一般公募の人事審査を通じて採用されたパートナーメント職員です。特に、春の研究員一般公募は、CNRS最大の年中行事の一つであり、若者の重要な登竜門となっています。コンクールでは、CNRSのセクションはさらに細分化され、各サブセクション毎に割り当てられたポストを争うことになります。例えば、低エネルギー物理分野は、セクション01、サブセクション06に相当し、年2つ目のCR2ポストが割り当てられます。ここに国を超えて多数の若者が応募してきますので、必然的に激戦となります。

私の知る過去数年は、12月初旬に募集が始まり、1月第1週に書類提出が締めくくり、3月中旬から4月中旬にかけて面接が行われています。物理・化学の結果発表から、面接までの約1ヶ月間の間、候補者は関連する複数の研究所でセミナーを行うのが恒例となっています。これはコンクールとは原則無関係で、コメディニティが自らの存在と仕事をアピールする世界では非常に有効の機会となります。もちろん強制ではなく、選考当時アメリカにいた私は、この手続きは踏んでいません。面接は、各地のCNRSの研究拠点で持ち回りとなっており、私の時はパリ第8大学でした。面接を通じると、採用に至る最後の段階として配属先を巡る協議が待っています。配属の決定権はCNRSにあります。しかし、実際には、関連分野の研究所、そして採用者のポトムアッパーの要望が考察されます。例えば、CNRSとしては若手率の著しく低い研究所Aに配属させたいと思っていても、研究所Bが採用者の配属を切っ掛け願う場合は、それを優先することもあるわけです。従って、配属決定の意義が現実の効用を持つ重要を示しています。最も適切な選択を立てて協議を重ねることになります。新人の研究員は、1年間の仮採用の後、簡単な書類審査を通じて採用となります。

6. 結び

本稿では、フランス最大級の基礎科学研究機関であるCNRSを紹介しました。核物理は、私個人の意見からの文章でありこれを付記します。本稿を執筆するにあたっては、ナンシーのローリップ準備校で教鞭をとっている旧友アレクサイ・ラムス氏から貴重な御意見を頂きました。

（2015年7月28日原稿受付）