1. 三角格子の研究のあゆみ

互いに反強磁性相互作用をするスピノが三角格子を作るとどのような秩序状態がどのように実現するかは自明ではない。これはスピノにフラストレーションがあるためである。どちらも向いてよいがスピノの不連続挙動を適切に表現したものの言葉は、Andersonから刺激を受けたToulouseによって1977年にスピノグラスに対してはじめて導入されたが、三角格子に対する理解の関心はずっと古い。

Onsagerがイジング・スピノ二次元正方格子の長距離秩序を厳密に解いたことに刺激されたWannierは、三角格子では大きな不完全性を残したまま0Kまで長距離秩序が起こらないことを示した。1950年のことである。しかし適当なモデル物質がなかったため、三角格子は長い間理論家研究家研究でもしかなかった。

二核錯体モデルにより錯錆鋼の磁化率の解釈に成功した磁気化学者達は、かなり早くから三核錯体にも関心をもっていた。[Cr₆(CH₃COO)₆(OH)₂]₂Cl·8H₂Oの寄与磁化率の温度変化を戦栗が三つの競合する交換相互作用によって説明したのは1950年のことである。しかし三角格子反強磁性問題意識が発展したのは三核錯体でもなく低次元三角格子磁性体の研究からであった。

1958年渡辺、長谷川に続いてCu(NH₃)₄SO₄·H₂Oの磁気的一次元性が明らかにされた後、次々と新しい低次元格子磁性体が見出された。現在知られている低次元格子磁性体のモデル物質は1960年代に見出されたものが多い。阿知波はCsNiCl₃型化合物群の一元性を示したのも1969年である。

丁度この頃二次元格子上のハイゼンベルク・スピノやXYスピンは長距離秩序を起こさないことが厳密に証明されたが、他方XYスピン系の磁化率が有限温度で発散する可能性があることが分った物語をもたしか。

1970年代になると磁気相転移の分野でいくつかの新しい展開がみられる。1972年に発見されたスピノグラスは新しいタイプの相転移であった。金属と絶縁物、規則系と不規則系という著しい違いにもかかわらず、フラストレーション系の相転移という点でスピノグラスは三角格子反強磁性体と多くの類似性をもつ。

KosterlitzとThoulessが、同じ年に導入したスピノのトポロジカルな秩序という新しい概念は、二次元XYスピン系での有限温度における磁化率発散の謎を与えた。続いてAndersonがS=1/2の三角格子反強磁性体の基底状態を共鳴原子価結合によって説明したが、日本の実験家がとりあげてあまり注目されなかった。Villainによる磁気ソリトンの理論は1975年に出ているが実験的な検証はその後数年待つことになる。

CsCoCl₃の逐次相転移がフラストレーションとの関連で議論されたのはこのような時期であった。しかし、種々のモデル物質を用いた研究が盛んになったのは1980年代に入ってからである。

固体表面に吸着した原子は最密配置をとることが多いのでイジング・スピノ三角格子として扱うことができる。1970年代から盛んになったLEEDによる吸着原子の配列構造の研究はイジング・スピノ三角格子の基底状態を考える理論家に大きい刺激を与えた。長距離相互作用まで取入れた錶記、
1. 三角格子反強磁性体とモデル物質（目次）

金森の理論が発表されたのは1974年とのことである。

2. フラストレーション

フラストレーションという言葉はランダム系であるスピノグラスで最初に使用されたという経緯もあり、人によって使い方が違う。ここではあるリの格子点での相互作用が完全に打ち消し合う時だけフラストレーションと呼び、それ以外の状態を表す際には二つのフレームがある。フラストレーションのある系の基底状態は巨大的な検査度をもつが、三角格子ではスピノ角度配置をとると三重検査が残る。

完全なフラストレーションを起こすイジング・スピノ三角格子は正方格子と異なる0Kまで秩序化しないが、わずかでも次近接相互作用が存在すると長距離秩序状態が基底状態となる。J > 0 の場合は第1図 (a) に示すような 3 副格子フェリ構造となる。この構造の磁気的単位胞は化学的単位胞の 3 倍である。以下の議論では化学的単位胞に基づいた指数を用いる。XY スピン系やハイゼンベルク・スピノ系では第1図 (b) の 120°構造をとることによりフラストレーションを部分的に解消する。この構造も 3 副格子構造で磁気的単位胞はフェリ構造と同じである。双極子相互作用が支配的な場合は 2 副格子となる。

イジング・スピノ系が有限温度でどのような相転移をするか分子場近似で解析した結果、J > ある値範囲で二つの転移点をもつことが分かった。高温相は 1/3 の副格子が無秩序化したエントロピーの高い構造である。しかしその後計算機実験では、高温相は単純な部分無秩序構造 (PD 構造) が 120°構造で、sin 構造、第2図 (b) でなく、成分無秩序構造 (cos 構造、第2図 (c)) と場所と時間によって変わる比率で混っ

相転移に対するフラストレーションの影響は、
(1) 転移温度の低下、(2) 逐次相転移、(3) 弱い臨界異常として現れ、その秩序相は (4) 非直線構造
(5) 一般的でない変数をもつ相関、(6) ゆらぎの多い構造、(7) 共鳴原子価結合による量子スピン状態であり、ゆらぎの結果、(8) スピン短縮がみられる。

三角格子が長い間理論家だけの問題であったのはモデレータがなかったからである。フラストレーションの効果が初めて問題にされたのは第3図のようなCsCoCl₃の中性子磁気散乱強度の奇妙な温度変化である。この化合物はCsNiCl₃型構造をもつ基一次元格子反磁性体であるが、短距離秩序が発達した低温では磁気鎖の三角格子相転移とみることができる。インジング・スピン三角格子に対する上述の議論から二つの相転移を考えると中性子散乱の結果が説明される。

最後の章で述べる実験的利便により、三角格子でなく六方格子からフラストレーションの研究が始まったが、イオンが実際に三角配列をしている結晶構造ではCd₃型構造と菱面体ABO₃型構造についても研究されるようになった。二枚一組の三角格子が間接的に新しい結晶構造を考えたものであり、モデル物質として利用できそうである。モデル物質の結晶構造を第4図に示す。第1表は代表的なモデル物質である。

第4図 典型的なモデル物質の結晶構造。
表1 代表的モデル物質。

<table>
<thead>
<tr>
<th>スピン対称性</th>
<th>有効スピン</th>
<th>一次元化合物</th>
<th>二次元化合物</th>
</tr>
</thead>
<tbody>
<tr>
<td>イジング</td>
<td>1/2</td>
<td>CsCoCl₃</td>
<td>LiNiO₂</td>
</tr>
<tr>
<td>XY</td>
<td>1</td>
<td>CsFeCl₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CsFeBr₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RbFeCl₃</td>
<td></td>
</tr>
<tr>
<td>ハイゼンベルク</td>
<td>1/2</td>
<td>NaTiO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CsNiCl₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CsNiBr₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/2</td>
<td>VCl₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VBr₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/2</td>
<td>CsMnBr₃</td>
</tr>
</tbody>
</table>

本稿に続く各研究グループからの話題に対する導入としてモデル物質による研究の現状を概説する。表面吸着原子の研究は、温度の規定が難しく、下地との相互作用もあり相転移の理論との対応が難しいので割愛する。

3. 一次元化合物

CsNiCl₃ 型化合物では磁性イオンは 第5図に示したように偏平な単純六方格子を作り、相転相互作用のハミルトンアンは

\[H = J \sum_{\langle \alpha \beta \rangle} S_\alpha \cdot S_\beta + J' \sum_{\langle \alpha \beta \rangle} S_\alpha \cdot S_\beta + J'' \sum_{\langle \alpha \beta \rangle} S_\alpha \cdot S_\beta \]

と書く。鍵内の相互作用 は は最近接鍵みおよび次近接鍵みの相転相互作用 および に比べて圧倒的に大きい。は例外なく負でフラストレーションを起こす。が負の場合は有する区間での相転相互作用が相殺するので、磁性イオンの密度が高いのに比較的良好一次元性を示す。

第5図 CsNiCl₃型構造における相転相互作用。

磁気構造の一つとして考えられたが、相転に関連した議論ではなかった。

CsCoCl₃は21Kと9Kに と呼ばれる転移点をもつ。中性子散乱、NMR、ラマン散乱はイジング・スピン三角格子に対するPDフェリ転移で説明できる。しかし高温相でME効果は観測されないが、長磁気鎖を一つのスピンと考えることの不自然さは残っていた。

スピン波が存在しないイジング・スピン磁気鎖の第一励起状態はソリトンとして伝播する磁壁である。三次元秩序が完成した後は面間相互作用のために磁壁が動かないのが普通であるが、フラストレーションを起こしている磁気鎖では隣接している磁気鎖との相互作用が相殺しているので、転移点以下でも磁壁が伝播できる。磁壁ソリトンが通過すると、第6図のようにその部分のスピンが反転する。この機構で副格子スピンが反転するのでスピン系の熱平衡が保たれ、副格子の役割が次々入れ替わる副格子転換も可能となる。

部無秩序モデルは第一近似としては一応成功

第6図 磁壁ソリトンの伝播とスピン反転。

したがって、高温相とTN₂の性格はそれ程単純でないようである。低温でCsCoCl₃の中性子磁気散乱は一次元性を反映し、逆格子空間で薄板となる。面内の無秩序成分に由来する散乱強度は第7図のように高温相では予想通りに大きく、TN₂以下で急激に減少する。一方、面内フエリ成分を与える(111)反射が高温相でも弱く残っている。これからのことから高温相は磁的多重PD相で、その様相は時間とともに変化していると考えられる。

TN₃で臨界異常は非常に弱く、比熱の異常はなく、中性子の臨界散乱も観察されない。しかし、¹²¹CsのNMRのTN₃はN₃₂以下ではなく異常がないのにTN₃で非常に鋭いピークを示す。ESRと中性子回折の実験からTN₃以下でソリトンが動かなくなると結論されている。このことを反映して、パルスで処理した¹²¹Cs核スピンの緩和は、低温相では数時間にすぎないが対数的時間変化を示す。

フラストレーション系に対する不純物の効果は著しい。第8図はCoの0.34%をMgで置換したCsCoCl₃の中性子散乱強度の温度変化である。第3図と比べずかの非磁性不純物が低温相の秩序を破壊し、TN₂を消滅させることが分る。非磁性イオンで置換したCsCoCl₃の磁気相図を第9図に示す。磁化率の測定からも同様の結論がでる。

非磁性イオンはフラストレーションをもつ副格

第8図 CsCo₀.₃₀₆₆Mg₀.₆₉₄₄Cl₃の中性子磁気散乱強度の温度変化。

子に入るが最も安定である。しかし不規則に置換した非磁性イオンがその副格子になるとは限らない。この非磁性イオンとの相互作用は長距離秩序を破壊するランダム磁場として働く。この効果は計算機実験の予想をよりはるかに強める。試料によってCsCoCl₃の副格子磁化の温度変化の様子が変わる。

Mg Zn

中性子回折 ○
磁化率 ×
NMR △

第9図 非磁性イオンで置換したCsCoCl₃の磁気相図。
I. 三角格子反強磁性体とモデル物質（目次）

第10回 CsNiCl$_3$のc軸に平行な磁場中の比熱（足立公夫・他、神戸学園短期大学紀要 No. 7 (1985) 151より転載）。

第11図 磁化率と温度で決めたCsNiCl$_3$の磁化関係。

高温相の磁気構造は無秩序成分を持たれたc軸方向の直線構造であるという予測が強いが中性子回折によると高温相でもc面内成分が0とならない、光点屈折の異常がT_Nで観測されることに原因があると考えられる。38)

幅合らによる、ESRの共鳴磁場も線形でT_Nでは全く異常を示さず、T_Nに向って発散の傾向にある。このことは高温相が常磁性相と同様の動的な状態であることを示唆している。今後特性間の違い測定手段により高温相の動的性質を明らかにすることが必要である。また、CsNiCl$_3$と同様に二つの転移点をもっているCsNiBr$_3$やRbNiCl$_3$をくわしく調べることにより手掛りが得られるかも知れない。

強磁性磁気鎖をもっているRbFeCl$_3$とCsFeCl$_3$では双極子相互作用を無視することはできない。さらに、この系のFe$^{+}$イオンの基底状態が一重項であるため、交換相互作用の間のフラストレーションだけでなく、交換相互作用と双極子相互作用と結晶場分裂の間の競合も考えなければならない。XYスピンで近似されるこれらの系が秩序化する時は低温で120°構造が、結晶場発生の大きいCsFeCl$_3$では観察不能で、その後の科学者が実験しない。結晶相図では第10図に示す。39) どちらの化合物においても三つの磁気転位が観測されている。斯波と鈴木[29]はこれらの逐次相転移を交換相互作用と双極子相互作用の競合として説明した。

Mn$^{++}$イオンやV$^{++}$イオンを含む化合物はハイゼンベルク・スピン磁性体として近似できる。ど
の化合物も逐次相転移を示さず、常磁性状態から120°構造へ直接転移する。この転移が理論で予測されている新しいユニバーサリティーの臨界指数を示すかどうかはまだ明らかでない。

ヤーン・テラー（Jahn-Teller）イオンであるCu\(^{2+}\)やCr\(^{3+}\)を含む化合物は構相相転移をもち、三角格子が歪む。CsCuCl\(_3\)は420 K以下でCu\(^{2+}\)イオンがらせん構造をもつ特異な相に転移する。10 K以下の秩序相ではこの結晶構造からでくるジョラシスキ・守谷（Dzyaloshinsky–Moriya）相互作用により、c軸方向に長周期のらせんスピン構造が実現する。

4. 二次元格子化合物

代表的二次元三角格子であるCdI\(_2\)型化合物はc面で劈開し易いことから最も面間相互作用が強くすることが分る。くわしく調べられたVのハロゲン化物について述べる。

V\(^{2+}\)イオンはS = 3/2のハイゼンベルク・スピンとして取扱える。VC\(_2\), VB\(_3\), VT\(_3\)のT\(_N\)はそれぞれ36.0 K, 29.5 K, 16.3 Kで、VT\(_3\)はT\(_N\)の他13.8 Kに二次転移がある。T\(_N\)における磁化率の異常は非常に大きい。特徴的なことは第13図に示すように磁化率の異方性がT\(_N\)以下でも全く検出されないことである。一時このような特異な性質を次節で述べる量子的状態との関連で議論されたが、最近ではT\(_N\)の基底転移をハイゼンベルク・スピン系で起こり得るZ\(_2\)-渦が関与した転移とという視点で検討されている。

VCl\(_2\)の磁化率の温度依存性が臨界指数はこの理論の予言と良い一致を示す。

10年程前から研究が始まられた六方晶YFe\(_2\)O\(_4\)系化合物はもっと一般的にはRFeMO\(_3\)という組成をもっている。ここでRは希土類金属またはYで、Mは3d金属とかMgである。二枚一組の三角格子にはFe\(^{3+}\)イオンとM\(^{2+}\)イオンが不規則に分布している。三角格子上のスピンは低温で120°構造となっているが、4.2 Kでも面間のスピン相関はなく三次元秩序状態にはならない。中性子散乱散乱は(h/3 m/3l)に沿った棒状散乱がを与える。中性子散乱強度やメスバウアー効果による内部磁場も第14図のように短距離秩序の発達に従って徐々に大きくなる。
I. 三角格子反磁性体とモデル物質（日付）

この化合物はもともと不定比化合物なので格子欠陥が多し、磁場冷却効果も欠陥に関係している可能性がある。イオノンが不規則配置をとっているためランダム磁性体の性格をもっている。
RFeO₄の場合にはFe²⁺とFe³⁺が混在し電子交換をしている。これらの問題にもかかわらず、この系の化合物は三角格子反磁性体特有の性質を示す。今後、RとMとの組み合わせによりいろいろなタイプのモデル物質ができる可能性がある。

黒鉛とMCl₂の層間化合物ではMが層間で三角格子を作る。MnCl₂、CoCl₂、NiCl₂、CuCl₂の層間化合物が比較的よく調べられている。黒鉛の層間でMCl₂は直径10⁻⁸Å程度の島状クラスターになっていることが知られている。磁気的性質のステージ数依存性が少ないことは面間相互作用は予想外に小さいことが分る。MnCl₂化合物の低温での磁気構造は120°構造より長周期である。
CoCl₂とNiCl₂の化合物でみられるこの転移はクラスター内での秩序化とクラスター間の秩序化であると考えられている。これらの結果を三角格子反磁性体と関連させるのは今後の問題である。

5. 量子スピン系のモデル物質

これまで紹介してきたモデル物質は古典スピン系として近似できるものであった。S=1/2の系にAnderson③が共鳴原子価結合の考えを導入し、三角格子では一重項スピン対が次入れ替わりスピン液体状態が基底状態となることを示した後、FazekasとAnderson④はこの考えを原理性をもつハイゼンベルク・スピン系へ拡張した。このスピン液体状態は古典スピン系のフェリ構造や120°構造とは全く異なる状態である。現在量子スピン系の挙動についてさらに精密な計算が行われつつある。

1980年代になって三角格子反磁性体の実験が盛んになってから、量子的秩序状態のモデル物質による解明は実験家の一つの夢となった。三角格子不思議現象が見付かつ量子効果を結びつけて議論が広がるが、まだ確証の得られたものはない。モデル物質としてはS=1/2で面間相互作用の極めて小さい系をさがすことになる。現在量子

の秩序状態の可能性を議論されているのは最近平行に位置する菱面体ABO₃構造をもつNaTiO₂とLiNiO₂である。①

菱面体ABO₃構造は2倍の超格子をもつNaCl型構造で4枚毎の最密面を磁性イオンが占める。NaTiO₂中のTi³⁺はS=1/2でESRのg値からもハイゼンベルク・スピンに近い、磁化率で相転移らしい異常を観測されず、中性子のフラッグ散乱も消滅散乱も現れないが、低温になるとき磁化率が増し、線幅の狭いESR信号の強度が増える。

LiNiO₂中のNi³⁺はCo²⁺と同様有効スピン1/2のイジングスピイン系として近似される。250Kと19Kで二つの相転移があるのは古典スピン系と似ている。250K以下では第15図のように磁化が磁場に対して非直線的変化をする。不思議なことに磁転移点以下でも中性子のフラッグ散乱も消滅散乱も観測されない。60kOeの磁場中で測定してもこの事情は変わらない。一方ESRの共鳴磁場、線幅、強度は二つの転移点で異常が見られ、特に下の転移点では発散する傾向にある。これが量子的秩序状態への転移であるかどうかは今後の問題である。
酸化物ではハロゲン化物より格子欠陥ができ易く、化学量論性が問題となると単結晶も作り難い。実際、実験結果の試料依存性も大きいようである。良質の試料作成が今後の重要な課題となるだろう。

6. ま と め

現実の相転移には複数の相互作用が関与することが多く、それらの相互作用が互いに競合する場合も少なく、フラストレーションは競合の効果を最も純粋な形で教えてくれる。三角格子反強磁性体の実験的研究の歴史は長くないが、実験と理論の相互の刺激により日本を中心として多様な新鮮な事実が見出された。

フラストレーションは相互作用径路を最短距離で一周したとき、径路内の結合数が奇数の格子、すなわち bipartite でない格子で結合が反強磁性的な場合に起こる。最も単純なもののが三角格子反強磁性体である。古くからフラストレーション系として有名な fcc 格子も層状三角格子と考えられる。しかし磁気転移点で正方変形や菱方変形するので fcc 構造をもつフラストレーションのモデル物質はまだ知られていない。同様に正三角形の三核錯塩も不安定なようである。比較的安定な三角格子と六方格子だけがモデル物質として知られている。

三角格子反強磁性体の有利な点は格子点が同等なので、スピングラス等のランダム系の磁性体と比べると構造や相互作用にあいまいさがないことである。三角格子におけるスピニの不規則配列やゆらぎはすべて規則的相互作用から生じたものなので、スピニ点の不規則性とは全く無関係である。三角格子は自らの相互作用で生じたランダムスピニ系といってよい。三角格子による相間がランダム系の理解の手助けになると期待される。

フラストレーションを示す現象が最初に三角格子でなく六方格子をもつ CsCoCl₃ で見出されたことには必然性がある。長い磁気鍵の秩序化であるため古典スピニ近似が良く、理論との対応が直感的であった。三角格子の場合には面間の相関と面内の不規則性を実験的に分離することが困難である。また、六方格子ではスピニの運動が遅いこととも有利である。古典スピニ系でわれた量子スピニ系

である三角格子反強磁性体の特徴は秩序状態の動的特性であるから、その変化が速過ぎない方が実験家には有難い。しかし、六方格子で三角格子のすべてを用例できるわけではなく、それぞれ間有の現象がある。最近理論家が六方格子にも興味を持ち始めめたので実験家には心強いが、計算機の限界があるため現在の実験と直接比較できるような鏡内相互作用の強い系は見つかれない。

今までにべくしく研究された化合物はまだ数少ないが、研究の進展とともに興味深く性質を示す新しいモデル化合物が見出されるであろう。これらの物質について熱力学量とともに磁気共鳴のような局所的情報を与える手段と中性子回折のような位相的情報を与える手段を組み合わせた多面的研究が期待される。

参考文献
I. 三角格子反強磁体とモデル物質（目片）

31) 足立公夫, 綱代芳民, 目片 守, 竹田和義, 長谷田泰一郎: 神戸常盤橘大紀要 No. 7 (1985) 151.

