鎖のゲル——ゾル-ゲル転移——

和 泉 義 信
三 宅 康 博

高分子が架橋によって無限網目を形成していく過程を追跡すると、ある特定の段階で、尖端なゲル点が存在する。高分子は、このゲル点で急に構造的な液体から弾性ゲルへと変化する。この現象がゾル-ゲル転移であり、それを示すと他の架橋現象に共通するパロモロジー理論と密接な関連があることが指摘されてきた。
の理論により計算された臨界指数は、古典論の値と一致した相違を示した。更に、
臨界現象の研究を通じて確立されたスケーリング則や普遍性の原理は、どのように
ソル-ゲル転移に適用されるか、実験結果との比較を含めて、現状を解説する。

§1. はじめに

ゲル化とは、架橋によって高分子が無限網目を
形成する過程をいう。その過程は、急に粘稠な液
体から、弾性ゲルへと変化する急なゲル点の存
在により長 بواسげられる。この問題は、ソル-ゲ
ル転移として、古くから多くの研究者の注目を集
めてきた。1) 1940年代には既に、フローリらによ
り高分子のゲル化の理論が提出された。2) この理
論は更に、ペーデ格分子の問題に拡張され、ゴー
ドンらにより引き続きされてきている。3)

これに対して、近年確立された相転移現象の物
理のソル-ゲル転移への適用は比較的新しく、フロー
リらの理論の予測をきわだっていた違を示した。4)
この問題との関連で、ゲルの示す特異な性質もま
た、相転移の物理によって理解されてきた。5) 以
下、§2 では、ソル-ゲル転移の臨界現象としての
側面からはじめよう。

§2. 臨界現象としてのソル-ゲル転移

三官能以上の基をもつ単官体からなる系を考
える。簡単のため、溶媒を含まずと仮定する。単
官体間で形成される結合の割合を \( p \)、単官体が \( s \)
個結合したものを \( s \)-クラスターと名づけると、\( \rho = 0 \)
は 1-クラスター（単体）で、単官体ののみが存在す
ることを、\( p = 1 \) は全ての単官体が結合して一つの
無限網目を形成することを意味する。\( p < p_c \) では
有限サイズの \( s \)-クラスターの分布が形成される。
この状態をソルと呼ぶ。\( p > p_c \) では、少なくとも一
つの無限クラスターと各種サイズの \( s \)-クラスター
とが混在すると考えられる。この状態をゲルと呼
ぶ。ゲル中にはソルが含まれる。従って、ソル-
ゲル転移とは、有限サイズの \( s \)-クラスターからな
るゲルも、極くも一つの無限クラスターを含む
ゲルに相変化することである。その関係 \( p_c \) をゲ
ル点と呼び、磁性相転移のキュリー点に対応する。

自発磁化 \( M_i \) に対応する量として、単官体が無限
クラスターに属する確率（即ち、ゲル分率 \( G \)）をあ

北海道大学理学部高分子学科
060 札幌市北区北10条西8丁目

第1表 臨界指数とスケーリング則

<table>
<thead>
<tr>
<th>トポロジカルな臨界指数</th>
<th>( G \approx (p-p_c)^{1/2} ), ( S_u \approx (p-p_c)^{1/2} ), ( \delta = 1+1/\beta ).</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さの尺度を与える臨界指数</td>
<td>( &lt;R_e&gt; \approx (p-p_c)^{1/2} ), ( R_e \approx S )</td>
</tr>
<tr>
<td>巨視的臨界指数**</td>
<td>( \gamma \approx (p-p_c)^{1/2} ), ( E \approx (p-p_c)^{1/2} )</td>
</tr>
</tbody>
</table>

ソル-ゲル転移:
\[ \beta = (3-\gamma)/\lambda, \gamma = 1/(\lambda-2), \delta = 1/(\lambda-2), \]

\[ \rho = (1+\beta)/(\beta+1) \] の関係式を仮定すると、\( \delta = 2\beta+1 = \beta(0+1) \) が成立する。

てることができる。これは、\( G \) が \( p < p_c \) では零,
\( p < p_c \) では \( p_c \) からのずれ \( p - p_c \) に (少なくとも \( p_c \) 近
傍で) 比例することからである。\( G \) に共役な量として、
重量平均分子量 \( S_u \) を考えると、\( S_u \) は (\( p_c - p \) )
に比例して発散する（数平均分子量 \( S_u \) はこの条件
を満たさない）。このことは、\( S_u \) が帯電率 \( \chi \) に対
応することを示している。6) 磁性相転移も、熱力学
的相転移であるのに対し、ソル-ゲル転移は、
幾何学的な結合方法が問題となるトポロジカルな
転移であるといえる。この対応関係に着目すると、
ゲル点近傍での物理的振舞いに対し、磁性相転移
で確立した概念―臨界指数、スケーリング則、普
遍性の原理などが適用される。第1表は、臨界指
数の定義とスケーリング則をまとめたものである。
\( s \)-クラスターの分子量分布は、\( p \rightarrow p_c, s \rightarrow \infty \) の極限で、\( n_s(p)/n_s(p_c) = f((p-p_c)s^\tau) \) の同次関数で記述できる。7) ここで、\( n_s(p_c) \) は \( p_c \) におけ
る \( s \)-クラスターの平均数で、\( s \rightarrow \infty \) で \( n_s(p_c) \approx s^\tau \)
の形をとる。この時、臨界指数は、分子量分布を
特長づける指数 \( \sigma \) と \( \tau \) を用いて、第1表のように
表わせる。表中の指数のうち独立なものは 2 個で、
\( \sigma \) と \( \tau \) はパーコローションクラスターの分子量分
布が分かれば、§4で述べるように実験的に求めら
れる。
§3. パーコレーション模型の臨界指数

フローリーらの理論は、第1図に示したベーテ格子上でのパーコレーション模型に対応している。点状の単体は、反応が進行につれ、s-クラスターへと自由に成長（分歧）できると仮定する。この模型の特長は、正確な$\rho_c$を与えるが、分子内環状、空間次元、排除体積効果などを無視している。これに対し、第2図に示した無限周期格子上のランダム・ボンド・パーコレーション模型では、これらの効果を考慮に入れることができるが、溶液の格子模型同様、格子点上的運動は厳しく制限される。$\rho_c$近傍での物理量の変化は、前節の臨界指数で特長づけられる。この模型に対する臨界指数の数値が、モンテカルロ法、級数展開の方法、繰り込み群の方法などを用いて評価されている。これらの結果は、フローリーらの理論（古典論と呼ばれる）の結果と共に第2表に示した。両理論の指数の違いは、前述の効果を考慮したかどうかに由来している。

いずれの理論の予測が正しいか、実験結果と照合してみよう。1963〜1978年の実験結果を整理し、

![第1図 ベーテ格子（ケリー・トリー）](image1)

第2表 離散指数と振幅比

<table>
<thead>
<tr>
<th>指数</th>
<th>パーコレーション模型</th>
<th>古典論</th>
<th>物理量</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta$</td>
<td>5/36</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>$r$</td>
<td>43/18</td>
<td>1.74</td>
<td>1</td>
</tr>
<tr>
<td>$\delta$</td>
<td>91/5</td>
<td>4.9</td>
<td>2</td>
</tr>
<tr>
<td>$\nu$</td>
<td>4/3</td>
<td>0.88</td>
<td>1/2</td>
</tr>
<tr>
<td>$k$</td>
<td>?</td>
<td>0.7〜0.9</td>
<td>0</td>
</tr>
<tr>
<td>$t$</td>
<td>4/3?</td>
<td>1.7〜1.9?</td>
<td>3</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>36/91</td>
<td>0.46</td>
<td>1/2</td>
</tr>
<tr>
<td>$\tau$</td>
<td>187/91</td>
<td>2.20</td>
<td>5/2</td>
</tr>
<tr>
<td>$\rho_c(\rho=\rho_c)$</td>
<td>48/91</td>
<td>0.40</td>
<td>1/4</td>
</tr>
<tr>
<td>$\rho_c(\rho&lt;\rho_c)$</td>
<td>0.641</td>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>$\rho_c(\rho&gt;\rho_c)$</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td>$C'/C$</td>
<td>0.005</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>

表中の？は、異なるパーコレーション模型の予測値。

たレビューから、両者の優劣を判定できない。それ以降の実験的研換は、主として粘性η及び弾性率Eの臨界指数$k, t$に対してもなされてきた。溶液中でのラジカル共重合と溶液の無い状態での総合重合時の粘性及び弾性率測定から、$k$として両系とも0.78±0.05, $t$として共重合時で2.1±0.3, 総合重合時で3.2±0.6の値が得られていた。$^{39}$ また、酸素分子の弾性率測定からは、ラジカルに近づくにつれ$t$は3.4から2.0へと変化する傾向が見られる。$^{40}$ 最近、透過率測定から$\eta$として0.9±0.1の値が得られた。$^{40}$ いずれの実験も古典論の予測を否定している。これらの結果から、今後の臨界指数決定時の課題として、実験的には$p_c$の正確な決定と共に$p_c$へと近づき、理論的には単純すべき則が成立する範囲を予測することが望まれる。

次に$s$-クラスターの構造との関連で、ソルゲル転移を調べてみよう。

§4. パーコレーション・クラスターの静的及び動的構造因子

第1表の$R_g(p_c)$=S*ある関係に注目しよう。この関係は、$s$-クラスターの分子量$S$が、$p_c$における$s$-クラスターの回転半径$R_g$のフラクタル次元$D_g$で表わされることを意味している。ここで、$D_g=1/p$である。この時、$s$-クラスターの静的構
造因子 \( I_1(q) \) は、\( I_1(q) \propto 1/\sigma^2(q^{-1} \ll R_g) \) と記述される。そこで、\( q \) は散乱ベクトルである。動的構造因子 \( I_1(q, t) \) は、流体力学的相互作用による \( s \)-クラスターの形状変化を考慮して、

\[
I_1(q, t) = \exp \left( -q^2 D t \right) H(q R_g; \phi t)
\]

と記述できる。ここで、\( D \) は拡散定数である。流体力学的相互作用にカークランド近似を適用すると、\( \phi = kT/\eta R_g \) となる。この \( \eta \) は溶媒の粘性を表わす。

次に、これらの式を \( s \)-クラスターの多分散系に拡張しよう。\( s \)-クラスターの分子量分布を \( 2 \) の同次関数を用いる。この関数の妥当性は、ポリスレッソン溶液に \( \tau \) 線を照射し、\( p < p_c \) の条件で得られる \( s \)-クラスターの分子量分布を GPC 法で直接調べることにより証明された。\(^{11, 12} \) 結果を用いて、\( \tau \) として \( 2.3 \pm 0.1 \) を得た。この値は第 2 表のパーコレーショント理

理値に近い。

多分散系から得られる全散乱強度 \( I_s(q) \) は、

\[
I_s(q) = Bcv S \chi(q) \quad I(q) = \frac{1}{S} \sum n_i(p) I_i(q) dS/S_0
\]

と記述できる。ここで、\( B \) が装置定数、\( v \) は散乱体積、\( \chi \) は濃度を表わす。\( p = p_c \) では \( I_s(0) = 1 \) で \( I_s(q) \propto q^{-2} \) と書ける。ここで、\( \mu = D_0(3 - \tau) \) である。

第 2 表から、古典論でもパーコレーショント理论でも、\( p = 2.0 \) となる。

他方、多分散系の \( I_s(q, t) \) は、\( I_1(q, t) \) と

\[
I_s(q, t) = Bcv \int S \chi(q) I(q, t) dS \propto q^{-2} F(q^2 t)
\]

de関係づけられる。以上の結果は、\( p > p_c \) でも、\( q^2 \sqrt{R_g} \) に限界するまで成立する。これらの取扱いは、\( s \)-クラスター間に干渉効果がない場合に適用される。最近、\( 0 < \tau < 3 \) の範囲の任意の \( \tau \) に対応した \( \mu \) が、フランタル概念を用いて計算された。\(^{12} \)

§ 5. 希釈効果

実際のゲル化は、\( f \) 官能性単量体の他に溶媒分子が介在する。今、各格子点は、単量体が \( \phi \)、溶媒が (1 - \( \phi \)) の割合でランダムに占有されているとする。結合は、隣接する単量体間でランダムに生じ、溶媒分子はこれに関与しないとする。結合確率を \( p \) で表わすと、この場合の相図は第 3 図のようになる。\(^{13} \) §3 のボンド・パーコレーショント模型は、\( \phi = 1 \) に対応している。図から、ソル→ゲル転移はゲル点でなく、ゲル曲線で表わされる。ゲル曲線は、至るところ、§3 のパーコレーショント模型の臨界指数が適用される。両、この模型では、溶媒の存在によって臨界指数の値は変化しない。

第 3 図の模型で、溶媒の温度を下げたり、溶媒を用いると、単量体体は変化としてランダムに分布せず、結合確率 \( p \) は著しく溶媒の性質に依存するようになる。この場合のソル→ゲル転移は、可逆ゲル（弱いゲル）と不可逆ゲル（強いゲル）とに分けて論ずるが便利である。

1）可逆ゲル化

このゲル化の特長は、一旦形成された単量体間の結合が、熱平衡状態で切断したり、再結合したりする点にある。\( p \) は、一般に温度 \( T \) と \( \phi \) の関数である。このゲル化が、パーコレーショント理論\(^{13} \) と、\( p \) に温度のある関数形を仮定した単純立方格子上\(^{10} \) とで調べられた。両者の結果は定性的に同じであるので、両者の結果を第 4 図に示す。\(^{13} \) 図から、可逆ゲル化の特長として、\( T_{\text{max}} \) の存在と \( Q \) 点の存在が示される。\( T_{\text{max}} \) 以上では \( \phi = 1 \) でもゲル形成は起こらない。\( Q \) 点では臨界点とゲル曲線が一致している。パーコレーショント理論では、\( Q \) 点を含む全てのゲル曲線に沿って、古典的指数を与える。これに対して、単純立方格子上で繰り込み効果の予測は、\( Q \) 点を除いてランダム・パーコレーショントの指数を、\( Q \) 点では磁性相転移の臨界指数を与える。
ii) 不可逆ゲル化

このゲル化は、ある温度以下に系を急冷することにより実現される。可逆ゲル化との違いは、第4図においてTmaxが存在しない点と絶縁が急冷温度で置きかえられる点とにある。ゲル曲線に対する臨界指針として、第4図のQ, Q', Q''に対応する点を除いて、可逆ゲル化と同じ指数が、Q' とQ''では磁性相転移の臨界指針が、Q点ではこれらと全く異なる値が予測されている。

このようにQ点での実験ができると、全く別の観点から、ソル-ゲル転移の理論の実験的検討が可能となる。

iii) 実験との比較

最近、第4図の(a)~(c)に相当する相図が、代表的高分子の一つであるポリ塩化ビニル溶液の中に見出された。特に、溶媒として二硫化炭素を用いると、第4図(b)のQ点が現わされる。ポリ塩化ビニルの分子量を増加させると、ゲル曲線は、温度が下降するにつれ、急勾配で臨界点と交叉するようになる。この特長は、インジング型の粘弾性体の相図と類似している。粘弾性体では、ゲル曲線の代わりに、臨界線がT=0Kでゲル点と交叉する。このゲル曲線はEldridge-Ferryの式を使って表わすことができる。
第 3 表

<table>
<thead>
<tr>
<th>C (g/100 cm³)</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>5.4</td>
<td>3.0</td>
</tr>
<tr>
<td>7.7</td>
<td>2.8</td>
</tr>
<tr>
<td>11.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

このことは、限界値濃度が高分子間の接触濃度に関与していることを意味している。この系の弾性率 E の測定結果は、ゲル化温度で還元した温度に依存し、E が濃度の 2 乗に比例することを示した。また、E の温度及び分子量依存性はゴム弾性理論で説明され、臨界指数は求められていなかった。第 5 図は、中性子小角散乱測定より求めた \( I_s(q) \) の温度-濃度依存性を示している。ゲル曲線に近づくにつれ、\( I_s(q) \) の q 依存性は顕著になる。各濃度でのゲル化温度に対応する S4 の指数 \( \mu \) を求めると、第 3 表のようになる。この表から、濃度が増加するにつれて、S4 の予測と一致するようになるが、濃度が希薄になるにつれ、この予測から外れる。この外れは、Q 点の存在と経由して考えられる。更に、低濃度側の \( I_s(q) \) の温度依存性は、完全不可逆でなく展歴を持つことが分かった。

第 6 図は、この系の中性子準弾性散乱スペクトルを表わしている。ゲル-ルーメル転移に伴って中心ピークの傾斜化が見られる。線幅から求められた拡散定数は、ゲル点からのずれの 0.9 乗として振舞う。また、この測定より求められたゲル点は、相図より求められたゲル点と一致せず、一般に低く現われる。このことは、ポリスチレン溶液のゲル化が、完全な平衡状態のゲル化ではないことを示唆しており、\( I_s(q) \) の温度展歴と対応している。

§ 6. まとめ

以上、ゲル-ルーメル転移の理論と実験結果を示して、この分野の現状を解説してきた。ゲル-ルーメル転移のモデルとしてのパーコレーショング理論は、限界値近傍での物理量の振舞を正しく記述するものが考えられているが、その実験的検証は、ごく最近になって提出されてきた。しかしながら、磁性相転移を含む臨界現象の理論と実験との見事な対応を思い浮かべると、ゲル-ルーメル転移の研究は、やっとその道を Damn 2 ばかりであるといえよう。既述の様にゲル-ルーメル転移には、系の展歴に依存するゲル点の幅の問題のように、この転移に特有な、今後解決しなければならない問題は極めて多いと考えられる。今後の一層の発展として、高分子の重合が進むにつれてゲル化し、最終的にはガラス状態になるゲル-ルーメル転移や、強い流動場中でのゲル-ルーメル転移など、多くの興味あるテーマが存在する。読者が、これを見にこの分野に興味を持っていただければ幸いである。

引用文献
鎖のダイナミックス

土井正男

高分子は、くにゃくにゃ曲がる長い鎖のような分子である。液体状態ではこの鎖は活動している。鎖の熱運動の様子は鎖が単独に存在しているか（高分子溶液）、またはたくさんの鎖が絡み合っているか（高分子溶液）によって大きく異なっている。ここでは、各々の系について研究の現状を総括的に解説する。

1. 一本鎖の運動

低分子溶液に溶けている孤立した高分子を考えよう。高分子は並進や回転などの鎖の全体的な運動の他に複雑な内部運動をしている。この運動を記述するために高分子をN個の小さな部分に分ける、各部分（これをセグメントと呼ぶ）の座標$R_n(t)$の時間発展方程式を求めめる。

最初にセグメントが一元的につながっているということだけを考慮した最も簡単なモデルを考えた。この場合、各セグメント間の距離の二乗の期待値は$N_b$として考えられる。セグメント間の平均距離を表す定数である。

$P(R_n) \approx \exp \left[ -\frac{3}{2b^2} \sum_{n=1}^{N} (R_n-R_{n-1})^2 \right]$. (1)

ここで$b$はセグメント間の平均距離を表す定数である。1式は相互作用のエネルギーが

$U_0 = \frac{3k_b T}{2b^2} \sum_{n=1}^{N} (R_n-R_{n-1})^2$ (2)

で表される系のポールツマン分布に対応するので。

東京都立大学理工学部物理学教室
158 東京都世田谷区深沢2-1-1

第1図（a）に示すようなパネで結ばれた小球系を考え、このブラウン運動を記述するランジュヴァン方程式を考えれば良い。通常の条件では慣性項

第1図 (a) ラウス模型、(b) ラウス模型の一つのセグメントが時間$t$の間に拡散する距離の二乗平均$\langle R(t) \rangle = (R(t) - R(0))^2$が$t$に対して両対数スケールでプロットしてある。