工学的応用
レーザーによるエネルギー研究

山中千代衛

はじめに
レーザー技術の最近における発展は、最も目立つものであり、エネルギー研究に顕著な進歩をもたらしている。ここではそのの中でレーザー核融合とレーザー同位体分離をとり上げる。

レーザー核融合
レーザーのプラズマの実験において高温度、高密度が達成され、レーザーショット当り重水素や三重水素核融合による熱核融合反応中子数 \(10^{16} \) 個が観測され、ペレット利得は \(1/500 \) に達し、爆発の物理がよく理解されるようになった。

レーザー核融合ではレーザー光を燃料ペレットのまわりから集光照射し、その表面に高温プラズマを発生、そのペレット外周への噴出の反作用によりペレットを爆発し、燃料を高密度に圧縮する。燃料の中心部で熱核反応が点火され、周囲の燃料が \(\alpha \) 粒子加速により高エネルギーに供給されるわけである。

レーザー爆発核融合の技術上の問題点と研究テーマなる物理過程を以下に示すことによらし、

（1）エネルギードライバーの開発

ガラスレーザーが最初進歩したドライバーとして、世界各国の主要研究所で使用されている（表1参照）。その後の特性は、（i）信頼性が高いこと、（ii）レーザーバルスが制御可能であること、（iii）集光性に優れていること、（iv）光学材料および技術の完成度の良いことである。またレーザー光は KDP 結晶により 2 倍（緑）、3 倍（青）、4 倍（UV）の高調波に 60〜80% の効率で変換される。爆発に対する波長依存性を研究するのに適していると言えよう。

点火実験に必要な出力 100 kJ 級のレーザーも十分技術的に可能となり、価格も低減しつつある。このような観点よりガラスレーザーは実際にレーザーとして完成している。

核融合実用用レーザーにはさらに高効率、高繰返し運転、耐久性の点に関し改良が必要である。ダイオードプンプ固体レーザー、Krf レーザー、イオンビーム、また自由電子レーザーなどの新しい装置が考えられ、研究者の注目する分野となっている。

<table>
<thead>
<tr>
<th>国別</th>
<th>研究所</th>
<th>装置名</th>
<th>ビーム数</th>
<th>出力パワーウ (TW)</th>
<th>出力エネルギー (kJ)</th>
<th>バルス幅 (ns)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>LLNL</td>
<td>Nova</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>0.1〜3.0</td>
<td>10^{16} neutrons, 10 g/cc</td>
</tr>
<tr>
<td></td>
<td>LLE</td>
<td>Omega-X</td>
<td>24</td>
<td>15</td>
<td>5</td>
<td>0.03〜0.1</td>
<td>10^{16} neutrons, 6 g/cc</td>
</tr>
<tr>
<td></td>
<td>U. Rochester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRL</td>
<td>Pharos-Ⅱ</td>
<td>2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.1〜1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KMS</td>
<td>Chroma-Ⅰ</td>
<td>2</td>
<td>0.6</td>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>USSR</td>
<td>Kurchatov</td>
<td>Mishen</td>
<td>4</td>
<td>—</td>
<td>1</td>
<td>1.0</td>
<td>開発中</td>
</tr>
<tr>
<td></td>
<td>Levede</td>
<td>Delfia</td>
<td>216</td>
<td>33</td>
<td>10</td>
<td>0.2〜3.0</td>
<td>0.03〜10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aurora</td>
<td>20</td>
<td>—</td>
<td>5〜50</td>
<td>1.0〜3.0</td>
<td>計画中</td>
</tr>
<tr>
<td>日本</td>
<td>ILE Osaka</td>
<td>Gekko-Ⅳ</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.1〜1.0</td>
<td>10^{16} neutrons, 2 g/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gekko-MII</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>0.1〜1.0</td>
<td>2×10^{16} neutrons, 4 g/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gekko-XII</td>
<td>12</td>
<td>55</td>
<td>30</td>
<td>0.1〜1.0</td>
<td>10^{16} neutrons, 10 g/cc</td>
</tr>
<tr>
<td>UK</td>
<td>Rutherford</td>
<td>Vukan</td>
<td>6</td>
<td>3.6</td>
<td>1.2</td>
<td>0.1〜1.0</td>
<td></td>
</tr>
<tr>
<td>フランス</td>
<td>Limeil</td>
<td>Phabus</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>0.1〜1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Octal</td>
<td>Greco</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0.1〜2.5</td>
<td></td>
</tr>
</tbody>
</table>

量子エレクトロニクスの現状と将来 Ⅲ-2 工学的応用 539
(2) 爆縮の物理

ベレット爆縮の物理過程の様子を図1に示す。エネルギーの流れに従ってその大要を略述しよう。

(i) 吸収過程 レーザーがプラズマに投入されるとレーザーの電場により電子が振動し、衝突によりそのエネルギーは熱に変換される。いわゆる逆伝導デバイス（古典吸収）である。ところがプラズマが高圧で無衝突になると吸収過程は共鳴吸収やプラズマ振動とレーザー光和が結合したパラメトリー不安定性などが発生する。共鳴吸収ではポテンシャルエネルギーよりも小ゼロに近づき、発熱が発生する。パラメトリー不安定性はプラズマおよびプラズマ誘導応力を発生し、高速電子を生成する。無衝突過程が好ましくないのは、高速電子が磁場の発生を伴い、燃料の先行加熱をもたらすからである。

(ii) レーザー強度 これに要するエネルギーは高密度領域で衝突過程による高い吸収係数を示すためである。図1にレーザー強度と吸収の関係を示す。エネルギー輸送と吸収エネルギーは断面断面領域からアプレーション面まで、主として熱電子により輸送される。温度勾配のスケールが電子の平均自由行程と同程度になると、拡散近似を用いた局所熱伝導の公式を使わなければならず、温度形はエネルギー流入に依存し、レーザー波長と強度の関数として決定される。その結果、アプレーション圧力はレーザー強度10^14±10^15 W/cm²において1～10 Mbarとなる。

(iii) 爆縮の流体力学的取扱 図3にテナーゼ爆縮のシナリオを示す。爆縮の時間経過は4段階よりなる。すなわち加速期（0<t<1）、慣性期（t<1）、反射ショック期（t<1）、スタグネージョン期（t<1）である。t=1の時、ブッシャーの動圧は燃料の静圧に達する。燃料はさらに酸化する。スタグネーション期にブッシャーヨリPDVの仕事によるエネルギーを受けとる。 最近われわれはLHART（Large High Aspect Ratio Target）と称する新形ターゲットを考察し、流体シミュレーションによる高効率の圧縮を実証した。これに要するエネルギーは熱電子球にラベッド由される密度に加え、速度に高密度球の密度に加え、速度に高速電子を生成する。無衝突過程が好ましくないのは、高速電子が磁場の発生を伴い、燃料の先行加熱をもたらすからである。レーザー強度と吸収の関係を示す。エネルギー輸送と吸収エネルギーは断面断面領域からアプレーション面まで、主として熱電子により輸送される。温度勾配のスケールが電子の平均自由行程と同程度になると、拡散近似を用いた局所熱伝導の公式を使わなければならず、温度形はエネルギー流入に依存し、レーザー波長と強度の関数として決定される。その結果、アプレーション圧力はレーザー強度10^14±10^15 W/cm²において1～10 Mbarとなる。
図3 仮想ターゲットの拡散モデル。

図4 レーザー核融合実験へのアプローチ。

レーザー同位体分離

レーザーによるウラン235の分離が注目されている。大阪大学では1977年、窒素レーザーと色素レーザーのシステムでウラン235の50倍濃縮を検証したが、現在さらに正確なウラン235の分光学的データと同位体間のエネルギー移乗の断面積に関し研究が展開されている。ここでは検討中のレーザーに関する課題を二、三取上げてみよう。

(i) レーザースペクトルの特性 ウラン235の超微細構造とそのスペクトル幅によりレーザー波長は決定される。ウラン蒸気ビームのドップラ効果、ゼーマン効果、ACジュール効果の評価が必要となる。

(ii) 所要レーザー出力 媒質内のビーム伝播に際しビームのブレーキアップを防止するため、レーザー強度の上限が設定され、また電荷交換断面積に基づく衝突の評価により、レーザービーム幅が定まり、これよりレーザー出力が与えられる。目標は100kW程度である。

(iii) レーザー変換能 原子の励起寿命により決定される。多重レーザー照射により多段階電離を考えるから、その際の光子利用効率を考慮しておく必要がある。

(iv) レーザー繰返し周波数 レーザービーム径とレーザー繰返し周波数は、レーザービームが効率よくウラン原子ビームと相互作用できるよう決定しなければならない。5〜10kHzが必要となる。

現在のところレーザーとウラン原子との相互作用に関する基礎データを集積中であるが、高密度状態での特性が特に必要とされている。

エネルギー研究の重要性は言及するまでもないが、これに対するレーザーの寄与は望ましい。

参考文献