Lexical Inferencing Strategies Used by Japanese EFL Students in Reading Comprehension

1. Introduction

The comprehension and successful intake of new lexical knowledge while reading for comprehension involves, among other things, a cognitive process known as inferencing. Lexical inferencing "involves making informed guesses as to the meaning of a word in light of all available linguistic cues in combinations with the learner's general knowledge of the world, her awareness of context and her relevant linguistic knowledge" (Haastrup, 1991:40). Readers utilize lexical inferencing strategies depending on an individual's unique balance of many variables in the interactive process of reading.

Several researchers have succeeded in identifying the lexical inferencing strategies used by L2 readers when they encounter unfamiliar words. Bot, K.De. and his collaborators (1997) indicated that in the lexical inferencing process both bottom-up information (letters or sounds, morphemes, etc.) and top-down information (knowledge of the world, the discourse setting, the text, the sentences, etc.) were used, and the reader had the possibility of internalizing at least some features of the new word. Fraser (1999) presented evidence that L2 readers increasingly generated word meaning on the basis of linguistic and situational elements in the text rather than associating the unknown word with a phonologically or orthographically similar word in their L1 or L2 lexicons. Though there was no general adopted framework of strategies, a distinction between bottom-up strategies and top-down strategies seemed to be previously accepted in word recognition research (Aizawa, K.1998; Fraser, 1999; Uliji & Francoise, 1998; Yamashita, J. 1996). Inferencing through bottom-up strategies was characterized as a data-driven process in which the form of the unfamiliar word activated intralingual or interlingual cues in the reader's mental lexicon. In contrast, inferencing through top-down strategies was a context-centered, more effortful and active process whereby meaning was created on the basis of contextual cues from the text and the reader's world knowledge. It has been commonly believed that strong L2 readers tended to use top-down strategies more frequently than weak L2 readers do because they have owned a larger vocabulary size and were capable of employing the combination of contextual cues and linguistic cues.

However, by overviewing previous studies related to lexical inferencing strategies, no special attention has been paid to the degree to which inferencing strategies were influenced by different levels of background knowledge. Are there any strategy differences in lexical inferences when L2 readers with different levels of content background knowledge read texts? Are there any strategy differences in lexical inferences when L2 readers with different levels
of lexical background knowledge read texts? To answer these questions, the goal of this study is, firstly, to describe the different types of processing involved when Japanese EFL students infer the meaning of unknown words and, secondly, to examine the kinds of factors that affect the learners' choice of strategies.

2. The Study
2.1 Hypotheses
(1) L2 readers would use more top-down strategies when they have high levels of content background knowledge;
(2) L2 readers would use more top-down strategies when they have high levels of lexical background knowledge;
(3) L2 readers would use more bottom-up strategies when they have low levels of either content or lexical background knowledge.

2.2 The Participants
53 second-year students and 51 first-year students in Hiroshima University participated in the test.

2.3 The Reading Materials
Two parallel passages selected from The Japanese Times were designed into the test (Appendix I). One was about the news of Snow's Osaka Plant, the other was about arm control talks between China and the U.S. The length of each passage was 264 and 291 words respectively. Each passage included three measures of variables: a measure of background knowledge (lexical knowledge and content knowledge, Appendix II), a measure of reading comprehension (with total score of 50 for two passages together, see Appendix I), and a strategy questionnaire (Appendix III). The strategy items in the questionnaire were developed from several previous findings (Aizawa 1998; Bot, K. de. and his collaborators 1997; Taillefer & Pugh 1998; Yamashita 1996). And they could be divided into two categories: bottom-up strategies (a,b,d,g) and top-down strategies(c,e,h). Item f, as it was one of lexical processing strategies, was designed to examine the participants' individual effort because efforts may play an important role in choices of strategies.

2.4 The Procedure
The participants were tested during their respective class periods, in which they were forbidden from consulting dictionaries. They first were asked to carry out a task on lexical and content background knowledges in relation to the two target passages. The result of lexical background knowledge was also collected as an indication of the words in the target passages that were unfamiliar to each participant. Then they were presented with the two target passages and were asked to complete the reading tasks for each passage. Finally, under the guidance of the classroom teacher, the participants could identify the strategy items in Appendix III without difficulty and were asked to report their lexical inferencing process according to the items. The whole procedure lasted about one hour.
3. Results and Discussion
3.1 Results
3.1.1 Results of the Background Knowledge Test and Reading Comprehension Test
Overall, the participants were tested twice. The first was to measure background knowledge, and the second was to measure reading comprehension. The means of scores and percentage of correct answers for each test were presented in Tables 1 and 2. Table 1 indicates that of a total of 17 scores of lexical background knowledge (one score for one word) for each passage, the participants’ means of scores and percentage of correct answers (5.28 or 31% for passage A and 4.6 or 27% for passage B) showed no obvious difference between the two passages. However, of a total of 6 scores of content background knowledge (two scores for one question) for each passage, the participants’ means of scores (5.52) and percentage of correct answers (92%) for passage A showed that the participants were much more familiar with the topic of passage A than that of passage B.

Comparing Table 1 with Table 2, it is clear that of the 17 words, the participants could identify more words if they read them in a contextual situation. A closer look at Table 2 showed that the participants could recognize even more words in passage A (54.6%) than in passage B (36.3%). Further more, of a total of 8 scores of reading comprehension questions (two scores for one question) for each passage, they proved more effective when reading passage A in terms of content understanding than passage B (60.6% vs. 35.3%).

Table 1. Means and percentage (in brackets) for background knowledge: lexical background knowledge (total: 17) and content background knowledge (total: 6). Participant number=104

<table>
<thead>
<tr>
<th>Background knowledge</th>
<th>passage A</th>
<th>passage B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>5.28 (31%)</td>
<td>4.6 (27%)</td>
</tr>
<tr>
<td>Content</td>
<td>5.52 (92%)</td>
<td>0.48 (8%)</td>
</tr>
</tbody>
</table>

Table 2. Means and percentage (in brackets) for reading comprehension: lexical inference (total: 17) and content understanding (total: 8). Participant number=104

<table>
<thead>
<tr>
<th>Read comprehension</th>
<th>passage A</th>
<th>passage B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td>9.29 (54.6%)</td>
<td>6.17 (36.3%)</td>
</tr>
<tr>
<td>Content</td>
<td>4.85 (60.6%)</td>
<td>2.83 (35.3%)</td>
</tr>
</tbody>
</table>

3.1.2 Unfamiliar Words
As stated, another aim of lexical background knowledge test was to identify participants' unfamiliar words. Based upon the analysis of the background knowledge tests, the following words were finally chosen as unfamiliar ones in each passage according to the following criteria (see Table 3 & 4):

Table 3 Analysis of the Unfamiliar Words: Parts of Speech (Passage A)

<table>
<thead>
<tr>
<th>Noun (7 words)</th>
<th>1. contaminant</th>
<th>2. staphylococcus aureus</th>
<th>3. bacillus cereus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4. on-site inspection</td>
<td>5. authorities</td>
<td>6. prefecture</td>
</tr>
<tr>
<td>Verb (2 words)</td>
<td>8. detect</td>
<td>9. resign</td>
<td></td>
</tr>
<tr>
<td>Adjective (3 words)</td>
<td>10. municipal</td>
<td>11. tainted</td>
<td>12. arrogant</td>
</tr>
</tbody>
</table>
Table 4 Analysis of the Unfamiliar Words: Parts of Speech (Passage B)

<table>
<thead>
<tr>
<th>Noun (7words)</th>
<th>1. hiatus</th>
<th>2. delegation</th>
<th>3. sanction</th>
<th>4. counterpart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5. undersecretary</td>
<td>6. violation</td>
<td>7. negotiator</td>
<td></td>
</tr>
<tr>
<td>Verb (2 words)</td>
<td>8. suspend</td>
<td>9. resume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj./Adv. (3words)</td>
<td>10. ballistic</td>
<td>11. bilateral</td>
<td>12. vehemently</td>
<td></td>
</tr>
</tbody>
</table>

These words were selected because:
1. All the participants failed to translate the words or explain the meaning of them. For example, none of them could translate "staphylococcus aureus" into Japanese or even give a brief meaning such as "a kind of bacteria";
2. Only a small number of participants could translate the words correctly;
3. Most participants reported in their answer sheets that the words either had previously been seen but couldn't been recalled or had never been seen (see Appendix III).

The following discussions were to investigate by what way the participants dealt with those unfamiliar words.

3.2 Discussion: Lexical Inferencing Strategies and Factors Affecting Choice of the Strategies

3.2.1 Background Knowledge

Table 5 shows the relationship between the inferencing strategies and background knowledge. As predicted, because of their content background knowledge, participants employed co-text inferencing strategy (Item c) in passage A much more frequently (30%) than in passage B (18%). They even seemed to read passage A more fluently as they were able to ignore unimportant words (Item e). As was also expected, they used bottom-up strategies more frequently when reading passage B than passage A. Bottom-up strategies was maintained at a level of 45% all together (Item a,b,d,g). The data in Table 5 implies a strong tendency to rely on a dictionary or another individual(Item g); and less occurrence of retrieving forgotten words(Item h).

Table 5. Lexical Inferencing Strategies: effects of Background Knowledge

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td></td>
</tr>
<tr>
<td>passage A</td>
<td>0.5</td>
<td>4</td>
<td>0.3</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>0.2</td>
<td>*</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>passage B</td>
<td>0.9</td>
<td>8</td>
<td>0.6</td>
<td>5</td>
<td>2</td>
<td>22</td>
<td>18</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n= average number of unfamiliar words which was(were) inferred by different strategy items. % = percentage of use of each items when inferring. *Indicates that the numbers were too small to report.

3.2.2 Different Grade in the University

It is found in Table 6 that Strategies c, e, g were the central strategies used by both groups of readers. It appears that university students didn't have enough confidence in dealing with unfamiliar words even though they have grasped a certain amount of vocabulary. The
phenomena were especially obvious when grade two participants met with lexical difficulty. Quite a few of them chose Item \(g\) in the questionnaire even though they had translated the word correctly.

The first-year participants (whose average score was 20.04) decoded unfamiliar words in a sentence level more often (Item \(b\ & g\)) than the second-year readers did (whose average score was 25.51). Also, high frequency of Item \(b\) by second-year students reflected the fact that L2 readers would change strategies as their language level improved.

Table 6. Lexical Inferencing Strategies: effects of grade

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>5</td>
<td>0.5</td>
<td>3</td>
<td>2.9</td>
<td>24</td>
<td>0.3</td>
<td>3</td>
<td>0.8</td>
<td>7</td>
</tr>
<tr>
<td>3.5</td>
<td>20</td>
<td>30</td>
<td>29</td>
<td>24</td>
<td>0.4</td>
<td>3</td>
<td>12</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Grade 2</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>3</td>
<td>0.2</td>
<td>2.8</td>
<td>23</td>
<td>0.5</td>
<td>4</td>
<td>1.1</td>
<td>9</td>
<td>3.8</td>
</tr>
<tr>
<td>31</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>8</td>
<td>12</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

\(n=\) average number of unfamiliar words which was(were) inferred by different strategy items. \(\%=\) percentage of use of each items when inferring. *Indicates that the numbers were too small to report.

3.2.3 Performance in the Test

Ten upper level participants (the highest score being 29) and 10 lower level participants (the lowest score being 15) were chosen for comparison in this version. Unlike Table 5 & 6, Table 7 reveals relatively less dependence on appeals for assistance in both groups (Item \(g\)). Not surprisingly, upper level readers appeared to read more confidently. They even used strategies for saving time on words they didn’t need to decode (Item \(e\)).

However, in the case of lower level readers, it is notable that they skipped unfamiliar words as frequently as 53%. The figure reflects the fact that lower level readers, as they lacked of knowledge of English, failed to get enough information(or cues) from the context. And less linguistic knowledge and little contextual cues must cause frustration and lower motivation in inferencing process.

Table 7. Lexical Inferencing Strategies: effects of performance in the test

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td>n%</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.5</td>
<td>4</td>
<td>0.5</td>
<td>3</td>
<td>3.3</td>
<td>28</td>
<td>0.7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>*</td>
<td>*</td>
<td>0.3</td>
<td>3</td>
<td>2.2</td>
<td>18</td>
<td>*</td>
<td>0.8</td>
<td>7</td>
</tr>
</tbody>
</table>

\(U=\) upper level subjects \(L=\) lower level subjects \(n=\) average number of unfamiliar words which was(were) inferred by different strategy items. \(\%=\) percentage of use of each items when inferring. *Indicates that the numbers were too small to report.

Individual Effort

In Table 5, 6, 7, it is evident that Item \(f\) occurred very frequently. Together with the high frequency of Item \(g\), it could be said that the participants read the two passages very passively. They would skip a lexical difficulty or rely on the dictionary or another individual. In other

- 71 -
words, they didn't make as much effort as expected.

4. Summary
As for the first goal of this study, namely, to describe the kinds of lexical inferencing strategies used by Japanese university students, it was found that, though it was not a lexical inferencing strategy, Item f (skipping the word and continuing reading) was most often used in both text conditions, by any group of subjects. The participants might have thought that the test was not relevant to their identified goals for learning English and contributed little to their vocabulary learning.

However, the figure does reflect, to a certain degree, the nature of students' reading processes. Two other items, co-text inferring (Item c) and appealing for assistance (Item g) accounted for the second in most cases. Co-text inferring was, in particular, often used when the unfamiliar words were presented in the surrounding text of sufficient and clear schemata and other linguistic cues. On the other hand, appealing for assistance too often implies that the readers should be given more instruction that focuses on developing inferencing strategies.

As for the second goal of the study, that is, to examine the kinds of factors that affect the learners' choice of strategies, it was found that the more background knowledge a reader had, the more often he used top-down strategies. The study identifies the grade superiority in choosing lexical inferencing strategies. It also suggests that it would be particularly necessary for lower level readers to improve their general English proficiency as well as lexical inferencing strategies incidentally or intentionally to arrive at the threshold level. Otherwise, the more limited their English knowledge, the less they employed strategies. As a result, they would have low motivation in L2 reading.

As a conclusion, the present study has proved the three hypotheses mentioned before. L2 readers with high levels of lexical and content background knowledge would use more top-down strategies. While L2 readers with low levels of either content or lexical background knowledge would use more bottom-up strategies. In addition, the result of present study also proved a fact that L2 readers' content background knowledge could compensate for the lack of lexical knowledge in a certain way.

References:

Appendix I.

Passage A (文章A)

Another Contaminant Found in Snow's Osaka Plant

OSAKA—Another kind of poisonous bacteria was detected in the product line valve at Snow Brand Milk Products Co.'s Osaka factory that was earlier found to be contaminated with staphylococcus aureus, it was learned Friday.

Bacillus coreus was detected in swab examinations conducted by the company on June 29, and the results were reported to authorities at a joint on-site inspection by the municipal government and health ministry July 1.
The company failed to mention the presence of the second type of bacteria at a press conference held that day, claiming only that *Staphylococcus aureus* had been found.

Several valves on the factory's production line were not cleaned over a long period and it is believed that that led to the contamination.

On Thursday, Snow Brand Milk Products Co. said it will consider closing its Osaka plant following the mass food poisoning outbreak linked to its tainted products.

Testuro Ishikawa, president of the company, also announced he will step down in late September to take responsibility for the food-poisoning outbreak.

"I thought it would be best that I resign," Tetsuro Ishikawa told a news conference. "I extend my heartfelt apology.

"We had confidence in the quality control of our products based on the company's history, but I cannot deny that we were arrogant."

The number of people who claim to have fallen ill in eight prefectures in western Japan after drinking bad milk reached 12,027 on Thursday night, according to the Health and Welfare Ministry.

Ishikawa said two senior managing directors and one director of the leading dairy-products maker will also resign.

Exercise One Translate into Japanese the underlined words in the passage.

Exercise Two. Answer the following questions based on the passage in English.

2-1. Which kind of bacteria was found first?
2-2. Who found the new contaminant? Circle the right answer.
 a. the municipal government b. health ministry
 c. the Snow Company d. authorities at a joint on-site inspection
2-3. Why was the milk contaminated?
2-4. According this passage, how many people have to quit their positions?

Passage B (文章B)

China and U.S Resume Talks on Arms Control

BEIJING(KYODO)—China and the United States resumed bilateral arms control talks Friday in Beijing after a 19-month hiatus.

A high-level U.S delegation, led by John Holum, undersecretary of state for arms control and international affairs, arrived in the Chinese capital Thursday evening for two days of discussions with top Chinese arms control negotiators.

"We are just resuming conversations we had under way several years ago. We are delighted to be back and have the opportunity to exchange views on national security issues with our Chinese counterparts," Holum said as he was leaving his hotel Friday.

Sino-U.S. arms control talks were suspended after the May 1999 NATO bombing of the Chinese Embassy in Belgrade.

The Chinese negotiators are led by Vice Foreign Minister Wang Guangya.

The talks are expected to cover a host of issues. U.S. plans to establish a national missile...
Defense (NMD) system to counter nuclear missile strikes from abroad have been vehemently opposed by the Chinese, who argue that the system targets Beijing.

Washington and Tokyo's plan to deploy a theater missile defense (TMD) system has also raised Beijing's ire—some members of the U.S. Congress wish to extend the TMD umbrella to cover Taiwan, which China considers a part of the mainland.

Beijing attacked the NMD and TMD plans on the eve of the talks.

The most pressing issue for the U.S. is to obtain Chinese assurances that it will stop the export of ballistic missile technology to Pakistan, arms control experts say.

A bill in the U.S. Senate seeks to establish an organization to monitor Chinese arms control compliance and impose sanctions on Beijing for any violations. The bill is complicating the passage of a bill granting China permanent most favored nation status, according to the New York Times.

Exercise One Translate into Japanese the underlined words in the passage.

Exercise II. Answer the following questions based on the passage in English.

2-1. Why were the bilateral arms control talks delayed?

2-2. What was the attitude of U.S.? Why?

a. positive b. negative c. doubtful d. rejecting e. delighted

Reason:

2-3. What was the attitude of China? Why?

a. positive b. negative c. doubtful d. rejecting e. delighted

Reason:

2-4. Where does Pakistan buy ballistic missile technology?

Appendix II

Background Knowledge Test. 背景的知識のテスト

(A-1. Translate or give the meaning of the following words either in English or in Japanese. (次の英語を日本語か英語にしなさい)

1. Contaminant 2. poisonous 3. bacteria 4. detect 5. staphylococcus aureus
6. bacillus cereus 7. swab 8. conduct 9. on-site inspection 10. authorities
17. prefecture

A-2. Answer the following questions.

1. What happened in Snow's Osaka Plant recently? 雪印乳業の事件はどんな事件ですか。

2. How did the government deal with the accident? この事件を政府はどのように処理しましたか。

3. How did the president of the Snow Company respond to the accident? 会社の社長はどう
4. How did you know this accident? By Japanese newspaper, English newspaper, or TV? こ
の事件をなんで知りましたか。日本の新聞ですか、英語の新聞ですか。テレビですか。

(文章 B) B-1. Translate or give the meaning of the following words either in
English or in Japanese. (次の英語を日本語か英語にしなさい)
1. resume 2. bilateral 3. hiatus 4. delegation 5. undersecretary 6. international
affairs1 7. negotiator 8. delight 9. security 10. counterpart 11. suspend
17. violation

B-2. Answer the following questions.
の中国大使館で何が起りましたか。
2. What is the debate on Arms Control between China and U.S.? 中国と米国との間で軍備管
理ついてどんな討論がなされませんでしたか。
3. When did China and U.S. begin conversation on Arms Control? 中国と米国は軍備管理に
ついての非公式会談を何時始めたのか。
4. Are you interested in affairs of foreign countries? If so, which country? What kind of
affairs? By reading Japanese newspaper, or English newspaper? Or just watching TV?
あなたは 外国の事情に興味がありますか。もしあれば 1. どの国ですか、どんな事情で
すか、2. そのためには日本新聞をよみますか、英字新聞をよみますか、それとも TVを観る
だけですか。

Appendix III
1. Questionnaire Paper for passage A and B
a. 語の意味を推測するために語を文法的に（主語など）分析しました。
b. 語の意味を推測するために単語自体を（接頭辞—語幹—接尾辞）に分けて分析したり、語尾変化
-ing, ly, ed, sを分析しました。
c. 文脈における手掛かりを探しました（他の部分からの情報等を用いるとか）。
d. 語の意味を推測するために発音してみたり、語音と音との関連を用いたりしました。
e. あまり重要でないから、語を無視して読んでいきました。
f. 語の意味を推測できなかったので、語を無視して読んでいきました。
g. 語を理解するために、どうしても辞書をひいたり、他の人にききたいたいです。
h. 語を忘れていたが、文で思い出すことができました。

2. あなたが今まで学習したことのない語と表現にIー1を付けなさい。
3. あなたが今まで学習したことはあるが、忘れてしまった語と表現にIー2をつけなさい。