黒毛和種体細胞クローン肥育牛における発育および肉質形質の評価

奥村寿章1,a・波田瑞乃1,b・齋藤 薫1・藤嶋吉宏1,b・高橋奈緒子1,c・為岡奈々恵1,a・
阿部 剛1,a・平山宗幸1,d・武田和也1,a・曾和 拓1・佐久間弘典1・河村 正1・
小林栄治1・山内健治1・山田信一1・小西一之1,a

1 独立行政法人家畜改良センター，福島県西郷村 961-8511
現所属：a 独立行政法人農林水産消費安全技術センター，埼玉県中央区 330-9731
b 農林水産省生産局，東京都千代田区 100-8950
c 日本獣医生命科学大学，武蔵野市 180-8602
d 農林水産省北陸農政局，金沢市 902-8566

（2010. 3. 29 受付，2010. 7. 2 受理）

要 約　同一ドナーから作出した黒毛和種体細胞クローン牛 11 頭，ドナー牛 1 頭および一般牛 9 頭を用いて，体細胞クローン牛の発育および肉質形質を調査した。体細胞クローン牛の発育形質の発酵係数は，体重，体高および胸囲で一般牛より低く，BMS No.を含む枝葉形質の発酵係数も同様の傾向を示した。また，体細胞クローン牛の胸指長の理化学特性，官能特性の発酵係数は，筋線維とコラーゲンを除く，ほとんどの形質で一般牛より低かった。体細胞クローン牛と一般牛との平均値は，すべての発酵形質で同水準であった。体細胞クローン牛の肉質形質の平均値は，一般的牛と異なっていたが，これまで報告されている黒毛和種の値と類似する傾向を示し，異なった要因の多くは遺伝的な筋肉内脂肪蓄積量の違いで説明できた。また，ミトコンドリア DNA は，筋肉内脂肪に影響を及ぼす可能性があるが，その効果は小さいことが示された。なお，体細胞クローン牛とそのドナー牛との発育および枝葉形質は，高い相関性を示した。以上の結果から，体細胞クローン牛とドナー牛との発育と肉質の相関性は高く，クローン技術により作出したウシの発育および肉質は正常値の範囲内にあることが確認された。

日本畜産学会報 81 (4), 431-442, 2010

最近における繁殖技術の進展に伴い，同一の遺伝子構成を有する体細胞クローン牛の生産が可能となり，わが国においてこれまで 500 頭以上の生産が報告されている（Watanabe と Nagai 2008）。体細胞クローンの活用法として，優良家畜の生産や増殖，あるいは育種改良への活用が考えられ（家畜改良センター 2009a；古川 2010）。その他，稀少動物の維持再生や実験動物としての利用が考えられる（家畜改良センター 2009a）。体細胞クローン牛の実験動物としての具体的な利用方法は，遺伝的に同一であることを利用したミトコンドリア DNA の理化学形質に対する効果，非加熱遺伝子効果，産肉能力の早熟性，および遺伝子変異の過程に関する研究などへの利用が考えられている（家畜改良センター 2009a）。

体細胞クローンの利活用としては体細胞クローンとそのドナー牛との間，体細胞クローン牛とドナー牛との間で相対性が高いため，体細胞クローン牛の体細胞とそのドナー牛の間で相対性が高いことが前提である。体細胞クローン牛の核内遺伝子はドナー牛に由来するが，ミトコンドリア DNA はレジピエント牛のミトコンドリア内に由来することが知られている（Evans ら 1999）。mtDNA はエネルギー生産に関する情報に由来しており，重要なエネルギー生産である脂肪分解とアントラロール酸化を制御する関係がある。mtDNA の効果を含めた考察はされていない。さらに，体細胞クローン牛の生体化学特性（Takahashi と Ito 2004；Tian ら 2005；FDA 2008），官能特性（長谷川ら 2006；奥村ら 2009）は，これまでいくつか評価されているが，分型分析によるエンドコントロール牛の検査性については評価されていない。そこで本研究では，体細胞クローン牛における数少ない発育と肉質のデータの蓄積に貢献するために，体細胞クローン牛，体細胞クローン牛と一般牛，体細胞クローン牛とドナー牛を比較することで，黒毛和種体細胞クローン牛の生産と肉質の特性を明らかにした。
材料および方法

1. 調査牛

調査牛は、黒毛和種雄牛1頭（ドナー牛）から作出した体細胞クローン牛11頭とそのドナー牛および通常の繁殖手法で体細胞クローン牛を同時期に生産した雄牛（一般牛）9頭とした。体細胞クローン牛は、肥育中の雄牛の耳から0.05%トリプシンにより核移植用に樹立したウシ線維芽細胞を用いて作出した。初代細胞は10%ウシ胎子血清（FBS）加Dulbecco's modified Eagle’s medium (DMEM)で3代継代した。50から70%までコンフール状態に達した線維芽細胞を、核移植前までさらに5から7日間血清飢餓培地（0.5% FBS加DMEM）で培養し、ドナー細胞として核移植に供した。核移植には、遺伝的背景が不明な食肉処理場由来の卵巣から採取した卵巣細胞-卵子複合体を用いて、Gotoら（1999）の方法に準じて行った。

肥育のために給与した濃厚飼料は、間接検定用飼料（TDN 73%，CP 12.0%以上）とし、給与量は飽食とした。粗飼料は、農場産のチモシーを主体とした混合乾草を飽食とした。去勢時期は約3か月齢時とした。調査牛の肥育は3か月齢から開始し、体細胞クローン牛は、20か月齢（3頭）、25か月齢（4頭）および30か月齢（4頭）で屠殺し、ドナー牛ならびに一般牛は約25か月齢で屠殺した。なお、すべての調査牛における生産および飼養管理は、家畜改良センター・養場で実施した。

2. 体測定値と枝肉付

体重は、試験開始時から終了時まで毎月測定し、体高と胸囲は、肥育開始時、20、25および30か月齢時に測定した。濃厚飼料摂取量は、肥育開始時から終了時まで毎日計測し、調査牛は、屠殺後行われた社団法人日本食肉格付協会による格付結果のうち肉質等級、脂肪交差評点（BMS No.）、枝肉重量、胸最長筋面積、バラ厚、皮下脂肪厚、歩留基準値を用いた。

3. 理化学分析

胸最長筋の第7-8胸椎上部について、筋線維を除き「食肉の理化学分析及び官能評価マニュアル」（家畜改良センター2000）に準じ、理化学分析を実施した。水分含量はサンプルを105℃で24時間加熱乾燥させ、加熱乾燥前の重量差により算出した。粗脂肪含量は水分含量測定後のサンプルを用い、ソックスレー抽出器によりジェチルエーテルにて16時間以上顔面させ得られた抽出物の重量により算出した。粗タンパク質含量はサンプルに硫酸を添加し加熱分解後、窒素蒸留滴定装置（Kjeltec Auto 2600；FOSS, Hillerod, Denmark）を用い滴定された窒素量から算出した。加熱損失は約50gの肉塊を70℃の温湯で1時間加温し、加温前後の重量差により算出した。剪断力値は加熱損失測定後のサンプルを筋線維に対して垂直断面が1×1cmになるように切り出し、剪断力値を測定した（model 5542；INSTRON, MA, USA）。保水性は加圧法（WHC-1；Wierbicki and Deatherage 1958）と遠心法（WHC-2；Irie and Swatland 1992）で測定した。

筋線維の分析方法は、あらかじめ液体室温で凍結したサンプルを凍結切片作成機HM505E；Microm International GmbH, Waldorf, Germany）を用いて、－18℃で8μm厚に切片作成し、Gauthier（1968）の方法に従い、ニトロソフルーテトクロムを基質として用いて、決定されるSDH活性により筋線維型（赤色、中間色、白色）を区分した。その後、区分した筋線維は、画像解析装置WinROOF（三洋商事，東京）を用いて、筋線維型の割合と短径を3視野200本以上計測し、その平均をデータに用いた。

コゲンは、Hill（1966）の方法で用いて可溶性コゲン、総コゲン量の測定用サンプルを調整し、BergmanとLoxley（1963）の方法で用いて定量したヒドロキシンリオン量をコゲン量計算式（Crossら1973）に代入し、計算した。なお、不溶性コゲン割合は、総コゲン量と可溶性コゲン量から算出した。

脂肪酸組成は、Folchら（1957）の方法で用いて脂肪を抽出し、これを水酸化カリウムエタノール溶液でケン化後、3フッ化ホウ素メタノールでメチルエステル化し、ガスクロマトグラフ（FID：GC8300，ジーエルサイエンス，東京）を用いて測定した。測定条件は、ガスクロマトグラフの注入口と検出器の温度を220℃、オーストンの温度を160℃とした。カリウムキャビリリ（CP-Sil 88 Wcot 0.25mm×50m，ジーエルサイエンス）を用い、キャリヤーガスにはヘリウムガスを使用した。

遊離アミノ酸、ペプチドおよび核酸関連物質量は、ミンチをした牛肉に塩を加えてホモジナイズ（20000 rpm，1min）し、ヘキサンで除脂、アセトンで除タンパクした後、得られたものを測定用のサンプルとした。なお、遊離アミノ酸、ペプチド分析には、内部標準としてノルロイシンを用いた。遊離アミノ酸、ペプチド分析は、測定用サンプルをピコタグ法により誘導体化後、液体クロマトグラフ（Waters 2690，Waters，MA, USA）に注入し、分析した。カラムは生体アミノ酸用カラム（picotag column for free amino acid，3.9 mm i.d.×300 mm；Waters）とし、検出器は（Waters 2487：UV, Waters）を用いた。核酸関連物質は、測定用サンプルをそのままのHPLCに注入し、分析した。カラムはAtlantis（4.6mm i.d.×150mm；Waters）を用い、検出器は遊離アミノ酸と同様のものを用いた。

4. 官能評価

官能評価は、基本味の識別テストとかささ判別テスト（家畜改良センター2005）の2段階方式进行選び、評価用語と尺度について訓練された分析型企業内パネリスト6~12人（平均8.2人）により行われた。なお、パネリストには事前に体細胞クローン牛肉であることを説明し、
了解を得た上で官能評価を実施した。パルネットレーニングは、パルネットリーダーの指導のもとに牛肉を評価することにより、牛肉を評価する訓練を実施した。凍結保存していた牛肉サンプルは、官能評価の実施前日に4℃で24時間かけて自然解凍したものを利用した。供試肉の調理は、あらかじめ加熱しておいた恒温乾燥機に熱電対を挿入した供試肉を入れ、165℃で加熱した。供試肉の内部温度が70℃になった時点で取り出し、1×1×2 cmに切り分け、提示試料（1頭当たり3片ずつ）とした。評価項目は以下の項目とし、パネルはそれらの項目を8段階の採点法で評価した。

5. mtDNA型の解析

ゲノムDNAは、肉サンプルよりDNeasy Blood & Tissue Kit（QIAGEN, Hilden, Germany）を用いて抽出し、20 ng/μlに希釈調整した。Andersonら（1982）によって決定されたmtDNAの塩基配列番号に基づき、D-loop領域15848 bpから362 bpの領域を対象に行った。領域の増幅はPCR法により行い、前半後半の2箇所に分けて増幅した。使用したプライマーはmtDNA01-F CTCAGGTCTCACCTCAGCAC, mtDNA01-R GATTATAGAAGGCTCCTC（Lotus等 1994）およびmtDNA_02F TTCTCCAGGGCCATCCTAC, mtDNA_02R GCTGGGCAACACTATATGTGとした。PCRはゲノムDNA 20 ng, 各プライマー6.25 pmol, dNTPs 0.4 mmol, KOD FX（東洋紡）0.25 Uを15 μlで行った。PCR反応は、94℃ 2分、28サイクル（98℃ 10秒, 55℃ 30秒, 68℃ 40秒）で行った。PCR終了後、2%アガロースゲル電気泳動でPCR産物の有無およびその大きさを確認した。これらPCR産物をシーケンス用テンプレートとして用い、シーケンス用のプライマーには，PCRと同じものをフォワードのみ用いた。シーケンス反応は，BigDye® Terminator v3.1 Cycle Sequencing Kit（Applied Biosystems, CA, USA）を用いて行い，Applied Biosystems 3130/3130 xlジェネティックアナライザ（Applied Biosystems）で塩基配列を決定した。塩基配列の解析は，ATGCソフトウェアを用いて行った。

6. 統計解析

肥育開始時から25ヶ月齢までの体型測定値について、体細胞クローン牛と一般牛データのばらつきを調査するために変動係数を算出した。また、分散の等しさについてF検定を用いて解析した。枝肉格付、理化学特性および官能特性については、25ヶ月齢で屠殺した体細胞クローン牛と一般牛について、同様の解析を行った。体細胞クローン牛と一般牛との平均値の差は、あらかじめF検定により2標本の分散を確認した上で、不等分散もしくは等分散を仮定したF検定を用いて解析した。なお、これらの統計解析はExcel 2007を用いて実施した。mtDNA型は、SAS JMP 7を用いて、5で得た塩基配列をクラスター解析（群平均法）により系統樹を作成し、Type1と2に分類した。

結果および考察

体細胞クローン牛の体重、体高および胸囲の平均値とその変動係数を図1-3に示した。体重、体高、および胸囲について、体細胞クローン牛の変動係数はすべての月齢で一般牛より低く、体重の10ヶ月齢で分散が異なった（P < 0.05）。肥育開始から25ヶ月齢までの体細胞クローン牛（n = 8）と一般牛の濃厚飼料摂取量（変動係数）は、それぞれ3567 ± 229 kg（6.4）、3380 ± 319 kg（9.4）であった。体細胞クローン牛の体重、体高および胸囲の平均値の差は、肥育開始から25ヶ月齢まで一般牛と同様であり、体細胞クローン牛の肥育前期における飼料摂取量も一般牛と同程度であった。体細胞クローン牛の体重の推移は、ドナー牛よりやや優れていたものの、大きな違いは見られなかった。

25ヶ月齢における体細胞クローン牛の枝肉格付を表1に示した。肉質等級、BMS No., 枝肉重量、胸最長筋面積、バラ厚および歩留基準値について、体細胞クローン牛と一般牛との分散に差がなかったが、体細胞クローン牛の変動係数は一般牛より低かった。体細胞クローン牛の皮下脂肪厚と歩留基準値の変動係数は一般牛より低く、分散が異なかった（P < 0.01, P = 0.05）。枝肉格付における体細胞クローン牛と一般牛の平均値の差の検定の結果、体細胞クローン牛の肉質等級、BMS No., 胸最長筋面積、歩留基準値は、一般牛より高く（P < 0.01）、皮下脂肪厚は薄く（P < 0.05), 枝肉重量とバラ厚は差が見られなかった。また、ドナー牛の枝肉形質は、同時期に屠殺したその体細胞クローン牛と同様であった。

日畜会報 81 (4) : 431-442, 2010
Figure 1 Increase in body weights and coefficients of variation (CVs) during the fattening period.
Body weights are expressed as means ± standard deviation (SD). The difference in body weight between somatic cell clones and controls during the fattening period was not significant ($P > 0.05$). * indicates a significant difference for variance in body weight between somatic cell clones and controls ($P < 0.05$). The number of somatic cell clones fattened from 9-20, 25 and 30 months of age was 11, 8 and 4, respectively.

Figure 2 Increase in withers heights and coefficients of variation (CVs) during the fattening period.
WITHERS heights are expressed as means ± SD. There was no significant difference in withers heights and the variance between somatic cell clones and controls during the fattening period ($P > 0.05$). The number of somatic cell clones fattened from 9-20, 25 and 30 months of age was 11, 8 and 4, respectively.
体細胞クローン牛の発育と肉質

Figure 3 Increase in chest girth and coefficients of variation (CVs) during the fattening period. Data of chest girth are expressed as means ± SD. There was no significant difference in chest girth and CVs between somatic cell clones and controls during the fattening period ($P > 0.05$). The number of somatic cell clones fattened from 9-20, 25 and 30 months of age was 11, 8 and 4, respectively.

Table 1 Means and CVs for carcass traits of somatic cell cloned cattle slaughtered at 25 months of age

<table>
<thead>
<tr>
<th>Item</th>
<th>Donor</th>
<th>Clones</th>
<th>Control</th>
<th>CVs Clones</th>
<th>Control</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat quality grade</td>
<td>5</td>
<td>4.8 ± 0.51</td>
<td>3.1 ± 0.62</td>
<td>10.5</td>
<td>19.3</td>
<td>NS</td>
</tr>
<tr>
<td>BMS No.</td>
<td>8</td>
<td>8.5 ± 1.33</td>
<td>4.6 ± 1.23</td>
<td>15.2</td>
<td>27.1</td>
<td>NS</td>
</tr>
<tr>
<td>Carcass weight</td>
<td>450</td>
<td>444.8 ± 30.0</td>
<td>452.4 ± 51.8</td>
<td>6.7</td>
<td>11.5</td>
<td>NS</td>
</tr>
<tr>
<td>Rib eye area, cm2</td>
<td>69</td>
<td>63.3 ± 2.94</td>
<td>51.2 ± 4.15</td>
<td>4.5</td>
<td>8.0</td>
<td>NS</td>
</tr>
<tr>
<td>Rib thickness, cm</td>
<td>7.7</td>
<td>7.4 ± 0.4</td>
<td>7.6 ± 0.5</td>
<td>5.1</td>
<td>6.4</td>
<td>NS</td>
</tr>
<tr>
<td>Back fat thickness, cm</td>
<td>2.0</td>
<td>1.7 ± 0.16</td>
<td>2.8 ± 0.97</td>
<td>4.8</td>
<td>31.6</td>
<td>**</td>
</tr>
<tr>
<td>Yields estimated percentage</td>
<td>76.1</td>
<td>75.4 ± 0.48</td>
<td>73.0 ± 1.59</td>
<td>0.5</td>
<td>2.0</td>
<td>$P = 0.05$</td>
</tr>
</tbody>
</table>

1 indicates means ± SD
2 indicates significant difference between clones and controls ($P < 0.05$)
CV: coefficient of variation
NS: not significant ($P > 0.05$); ** $P < 0.01$
Table 2 Means and CVs for physicochemical composition of *longissimus muscle* derived from somatic cell cloned cattle slaughtered at 25 months of age

<table>
<thead>
<tr>
<th>Item</th>
<th>Clones</th>
<th>Control</th>
<th>CV</th>
<th>F-test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture, %</td>
<td>47.4 ± 2.0</td>
<td>54.1 ± 3.6</td>
<td>4.3</td>
<td>6.6</td>
<td>NS</td>
</tr>
<tr>
<td>Ether extract, %</td>
<td>38.7 ± 2.9</td>
<td>29.6 ± 4.8</td>
<td>7.5</td>
<td>16.4</td>
<td>NS</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>13.1 ± 0.8</td>
<td>15.7 ± 1.0</td>
<td>6.3</td>
<td>6.4</td>
<td>NS</td>
</tr>
<tr>
<td>Cooking loss, %</td>
<td>16.1 ± 1.0</td>
<td>20.5 ± 1.9</td>
<td>6.1</td>
<td>9.4</td>
<td>NS</td>
</tr>
<tr>
<td>WHC-1</td>
<td>83.8 ± 2.6</td>
<td>76.6 ± 3.8</td>
<td>3.1</td>
<td>5.0</td>
<td>NS</td>
</tr>
<tr>
<td>WHC-2, %</td>
<td>81.5 ± 1.5</td>
<td>75.6 ± 1.7</td>
<td>1.9</td>
<td>2.2</td>
<td>NS</td>
</tr>
<tr>
<td>WBSF, N</td>
<td>17.1 ± 2.8</td>
<td>26.9 ± 4.7</td>
<td>16.6</td>
<td>17.5</td>
<td>NS</td>
</tr>
<tr>
<td>Muscle fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red, %</td>
<td>32.6 ± 6.5</td>
<td>30.8 ± 7.3</td>
<td>19.9</td>
<td>23.7</td>
<td>NS</td>
</tr>
<tr>
<td>Intermediate, %</td>
<td>28.2 ± 3.6</td>
<td>27.1 ± 5.2</td>
<td>12.7</td>
<td>19.2</td>
<td>NS</td>
</tr>
<tr>
<td>White, %</td>
<td>39.2 ± 8.7</td>
<td>42.1 ± 4.9</td>
<td>22.2</td>
<td>11.7</td>
<td>NS</td>
</tr>
<tr>
<td>Red, µm</td>
<td>42.4 ± 5.1</td>
<td>41.1 ± 4.2</td>
<td>12.0</td>
<td>10.3</td>
<td>NS</td>
</tr>
<tr>
<td>Intermediate, µm</td>
<td>38.4 ± 3.8</td>
<td>39.5 ± 4.5</td>
<td>9.9</td>
<td>11.3</td>
<td>NS</td>
</tr>
<tr>
<td>White, µm</td>
<td>43.5 ± 4.9</td>
<td>46.7 ± 5.5</td>
<td>11.2</td>
<td>11.8</td>
<td>NS</td>
</tr>
<tr>
<td>Collagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soluble collagen, mg/g</td>
<td>0.3 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>32.4</td>
<td>25.0</td>
<td>NS</td>
</tr>
<tr>
<td>Insoluble collagen, mg/g</td>
<td>2.7 ± 0.3</td>
<td>2.5 ± 0.2</td>
<td>10.7</td>
<td>9.1</td>
<td>NS</td>
</tr>
<tr>
<td>Total collagen, mg/g</td>
<td>3.0 ± 0.3</td>
<td>2.8 ± 0.3</td>
<td>11.2</td>
<td>9.3</td>
<td>NS</td>
</tr>
<tr>
<td>Collagen solubility, %</td>
<td>9.2 ± 2.4</td>
<td>8.5 ± 1.8</td>
<td>25.9</td>
<td>20.9</td>
<td>NS</td>
</tr>
</tbody>
</table>

1) means ± SD

indicates significant difference between clones and controls (P < 0.05)

CV : coefficient of variation

WHC-1 : water holding capacity measured by the procedure of Wierbichki and Deatherage (1958)

WHC-2 : water holding capacity measured by the procedure of Irie et al. (1992)

NS : not significant (P > 0.05)

べブチドと核酸関連物質を表4、 官能特性を表5に示した。 体細胞クローン牛肉の理化学特性において、 すべての項目で一般牛との間で分散に差はなかったが、 体細胞クローン牛の変動係数は一般牛より低かった。脂肪酸組成は、C18:2を除くすべての脂肪酸の体細胞クローン牛の変動係数は一般牛より低く、 C14:0、C16:0および脂肪酸とで分散が異なった（P < 0.05）。 ほとんどの遊離アミノ酸および核酸関連物質において、 体細胞クローン牛の変動係数は一般牛より低く、 グルタミン酸、 βアラニン、トレオニン、アラニン、リン、リシンおよびイソシンの分散は両区で異なった（P < 0.05）。 また、 体細胞クローン牛肉のすべての官能特性の変動係数においても、 一般牛より低かった。 理化学特性、 脂肪酸組成および遊離アミノ酸組成における体細胞クローン牛と一般牛の平均値の差の検定の結果、筋線維とコラーゲンを除く、 ほとんどの項目で有意な差が見られ、 体細胞クローン牛の粗脂肪含量は一般牛よりも多く、 ほとんどの遊離アミノ酸で一般牛より少なかった。

本研究において、 筋線維とコラーゲンを除くすべての形質において、 体細胞クローン牛は一般牛より高い相似性を示した。 この要因は、 体細胞クローン牛の有するドナー由来の遺伝情報が同一であることに他ならない。 一方、 体細胞クローン牛間の筋線維とコラーゲンの相似性が一般牛より低くなった理由は不明であるが、 これららの形質は環境的要因を受けやすいのかもしれない。 すべての形質において、 体細胞クローン牛と一般牛との平均値の差は、 環境が完全に同じと仮定すれば繁殖手法もしくは遺伝的背景の違いから生じている。筋肉内脂防蓄積は、 遺伝的背景に依存しており（Zembayashi 1994）。 BMS No.の遺伝率はこれまで0.64（守屋ら 1994）、 0.57（大澤ら 2004）と比較的高い。 同様に、 脂肪酸組成も血統で異なり（Okura 1992、 井上ら 2002）、 その遺伝率も中程度以上であったと報告されている（井上ら 2008）。 これらのことから、 体細胞クローン牛と一般牛間における筋肉内脂防量と質の差は、 遺伝的背景が原因であると考えられた。
Table 3 Means and CVs for fatty acid composition of intramuscular fat in *longissimus muscle* derived from somatic cell cloned cattle slaughtered at 25 months of age

<table>
<thead>
<tr>
<th>Item, %</th>
<th>Clones</th>
<th>Control</th>
<th>CV</th>
<th>Clones</th>
<th>Control</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14 : 0</td>
<td>5.1 ± 0.1<sup>a</sup></td>
<td>3.0 ± 0.4<sup>b</sup></td>
<td>1.1</td>
<td>12.5</td>
<td>0.8</td>
<td>*</td>
</tr>
<tr>
<td>C14 : 1</td>
<td>1.4 ± 0.2<sup>a</sup></td>
<td>1.0 ± 0.2<sup>b</sup></td>
<td>13.2</td>
<td>24.1</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C16 : 0</td>
<td>28.1 ± 0.4<sup>a</sup></td>
<td>26.1 ± 1.5<sup>b</sup></td>
<td>1.3</td>
<td>5.8</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>C16 : 1</td>
<td>5.7 ± 0.5<sup>a</sup></td>
<td>4.1 ± 0.6<sup>b</sup></td>
<td>8.7</td>
<td>14.9</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C17 : 0</td>
<td>0.8 ± 0.1<sup>a</sup></td>
<td>1.1 ± 0.2<sup>b</sup></td>
<td>11.4</td>
<td>13.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C17 : 1</td>
<td>0.9 ± 0.1<sup>a</sup></td>
<td>1.1 ± 0.2<sup>b</sup></td>
<td>5.8</td>
<td>14.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C18 : 0</td>
<td>9.1 ± 0.8</td>
<td>10.4 ± 1.3</td>
<td>9.1</td>
<td>12.8</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C18 : 1</td>
<td>44.0 ± 1.1<sup>a</sup></td>
<td>49.1 ± 2.0<sup>b</sup></td>
<td>2.5</td>
<td>4.1</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>C18 : 2</td>
<td>3.5 ± 0.7<sup>a</sup></td>
<td>2.8 ± 0.4<sup>b</sup></td>
<td>18.7</td>
<td>15.4</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>SFA</td>
<td>44.2 ± 1.1</td>
<td>41.5 ± 2.4</td>
<td>2.5</td>
<td>5.8</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MUFA</td>
<td>51.9 ± 1.5<sup>a</sup></td>
<td>55.6 ± 2.3<sup>b</sup></td>
<td>2.8</td>
<td>4.2</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>PUFA</td>
<td>3.9 ± 0.8<sup>a</sup></td>
<td>2.9 ± 0.4<sup>b</sup></td>
<td>19.6</td>
<td>15.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>US/S</td>
<td>1.3 ± 0.1</td>
<td>1.4 ± 0.1</td>
<td>4.6</td>
<td>9.9</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Melting point, °C</td>
<td>34.4 ± 1.2<sup>a</sup></td>
<td>23.3 ± 5.4<sup>b</sup></td>
<td>3.6</td>
<td>23.1</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

¹⁾ mean ± SD
^{a, b} indicates a significant difference between clones and controls (*P* < 0.05)
CV: coefficient of variation
NS: not significant (*P* > 0.05)
P < 0.05

牛肉のかたさは、筋肉内脂肪量（Davisら 1979；Nishimuraら 1999），サルコメア長（Steenら 1997）、コラーゲン（Lightら 1985；Bersonと Hunt 1986）等に影響される。本研究における体細胞クローン牛と一般牛の剪断力値の差は、コラーゲンに差がなかったことから、筋肉内脂肪量の違いによる可能性が考えられた。

遊離アミノ酸は肉中のタンパク質に由来するため、遊離アミノ酸組成における体細胞クローン牛と一般牛の差は、遊離アミノ酸量と脂の相関関係にある筋肉内脂肪量（Uedaら 2007）の違いから、ある程度説明できる。しかしながら、筋肉内脂肪を多く含んだ体細胞クローン牛肉のタウリン量は、一般牛の2倍以上であり（*P* < 0.01）、筋肉内脂肪の観点からは説明できなかった。体細胞クローン牛肉の遊離タウリン量に関する報告はこれまでないが、我々が測定した別なドーナ牛に由来する胸最长筋のタウリン量は、一般牛と同水準であった（未公表）。

一方、斎藤ら（2003）は、牛肉の遊離アミノ酸組成と遺伝的背景との関係を報告している。、これらのことから、タウリン量の違いは、繁殖方法による影響というより遺伝的背景による可能性が高いと考えられた。官能特性は、一般牛の理化学特性に影響されることから、体細胞クローン牛間の官能特性のデータのばらつきは、理化学分析値のばらつきによるものであると考えられ、官能特性における体細胞クローン牛と一般牛の差は、それぞれの胸最长筋の理化学特性を反映したものと考えられた。

今回、体細胞クローン牛の作成に用いたドーナ牛の一卵性子は、種牛の候補牛であり、ドナーの父は藤原系尾指の名牛であるとともに、母もBMS Noの育種価が比較的高かった。また、今回得られた体細胞クローン牛に由来する牛肉の肉質は、一般牛の評価価やこれまで報告されている黒毛和種胸最长筋の評価価（Okaら 2002；Okumuraら 2007a, b, 2008；Iwamotoら 2009）と比較しても、著しい違いは見られなかった。これらのことから、体細胞クローン牛と一般牛の肉質の違いは、体細胞クローン特有の生産方法に引き起こされたものではなく、筋肉内脂肪を中心とする遺伝的背景の違いによるものであると考えられた。また、今回、これまで報告されているクローン牛肉と一般牛肉との生物学的な違いのない（TakahashiとIto 2004；Tianら 2005；FDA 2008）は、官能特性を含む幅広い調査項目で示された。

体細胞クローンにおけるmtDNAの系統樹を図4、塩基配列と胸最长筋の脂質含有率を表6に示した。本研究では食肉処理場に由来する卵巣から採取した卵子を体細胞クローンの作成に用いたので、母系に由来するmtDNA（Evansら 1999）のタイプは同一でなかった。今回、Andersonら（1982）により報告されているmtDNAの塩基配列に対して、30ヵ所で変異が確認された。Mannenら（1998）のmtDNAの分類によると、Type 1に分類される

日畜会報 81 (4): 431-442, 2010 437
Table 4 Means and CVs for free amino acid content and nucleic components of *longissimus muscle* derived from somatic cell cloned cattle slaughtered at 25 months of age

<table>
<thead>
<tr>
<th>Item, μmol/g</th>
<th>Clones</th>
<th>Control</th>
<th>CV</th>
<th>Clones</th>
<th>Control</th>
<th>F-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic acid</td>
<td>0.15 ± 0.03</td>
<td>0.11 ± 0.04</td>
<td>22.3</td>
<td>34.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>0.45 ± 0.03</td>
<td>0.67 ± 0.17</td>
<td>6.1</td>
<td>25.7</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>0.04 ± 0.00</td>
<td>0.05 ± 0.01</td>
<td>11.2</td>
<td>26.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>0.44 ± 0.07</td>
<td>0.60 ± 0.12</td>
<td>16.6</td>
<td>20.4</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Asparagine</td>
<td>0.22 ± 0.03</td>
<td>0.26 ± 0.05</td>
<td>15.2</td>
<td>20.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>0.80 ± 0.11</td>
<td>1.04 ± 0.23</td>
<td>13.9</td>
<td>22.4</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>5.03 ± 0.78</td>
<td>4.24 ± 1.07</td>
<td>15.5</td>
<td>25.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>β-Alanine</td>
<td>0.19 ± 0.01</td>
<td>0.14 ± 0.06</td>
<td>7.5</td>
<td>42.5</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Taurine</td>
<td>3.01 ± 0.42</td>
<td>1.41 ± 0.60</td>
<td>13.9</td>
<td>42.8</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>0.21 ± 0.02</td>
<td>0.25 ± 0.05</td>
<td>11.5</td>
<td>19.1</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>0.33 ± 0.02</td>
<td>0.44 ± 0.09</td>
<td>6.2</td>
<td>20.2</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>3.01 ± 0.13</td>
<td>3.88 ± 0.80</td>
<td>4.2</td>
<td>20.7</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td>0.31 ± 0.05</td>
<td>0.39 ± 0.07</td>
<td>17.9</td>
<td>17.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>0.30 ± 0.04</td>
<td>0.39 ± 0.11</td>
<td>12.1</td>
<td>28.9</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.21 ± 0.03</td>
<td>0.37 ± 0.06</td>
<td>16.2</td>
<td>15.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>0.37 ± 0.01</td>
<td>0.56 ± 0.08</td>
<td>1.9</td>
<td>14.6</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>0.18 ± 0.01</td>
<td>0.28 ± 0.04</td>
<td>7.0</td>
<td>14.5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.24 ± 0.02</td>
<td>0.37 ± 0.04</td>
<td>8.3</td>
<td>10.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>0.45 ± 0.03</td>
<td>0.65 ± 0.08</td>
<td>6.3</td>
<td>12.7</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.22 ± 0.01</td>
<td>0.37 ± 0.03</td>
<td>5.6</td>
<td>8.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.14 ± 0.01</td>
<td>0.12 ± 0.01</td>
<td>8.4</td>
<td>9.6</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>0.26 ± 0.02</td>
<td>0.41 ± 0.07</td>
<td>6.0</td>
<td>16.2</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Total FAA</td>
<td>16.56 ± 0.84</td>
<td>16.99 ± 2.81</td>
<td>5.1</td>
<td>16.5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Carnosine</td>
<td>8.97 ± 1.88</td>
<td>9.77 ± 2.98</td>
<td>20.9</td>
<td>30.5</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Anserine</td>
<td>1.60 ± 0.14</td>
<td>1.73 ± 0.49</td>
<td>8.6</td>
<td>28.2</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Total dipeptide</td>
<td>10.58 ± 1.80</td>
<td>11.50 ± 3.36</td>
<td>17.0</td>
<td>29.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>IMP</td>
<td>0.64 ± 0.11</td>
<td>0.61 ± 0.30</td>
<td>16.6</td>
<td>49.0</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>HxR</td>
<td>0.64 ± 0.03</td>
<td>0.92 ± 0.20</td>
<td>5.0</td>
<td>22.0</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Hx</td>
<td>1.46 ± 0.18</td>
<td>1.93 ± 0.26</td>
<td>12.2</td>
<td>13.5</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

1) means ± SD

* indicates a significant difference between clones and controls (P < 0.05)

CV: coefficient of variation

IMP: inosine 5'-monophosphate

HxR: inosine

Hx: hypoxanthine

NS: not significant (P > 0.05); *P < 0.05

資料: Mannen et al. (1999)
体細胞クローン牛の発育と肉質

Table 5 Means and CVs for sensory traits\(^1\) of *longissimus muscle* derived from somatic cell cloned cattle slaughtered at 25 months of age

<table>
<thead>
<tr>
<th>Item</th>
<th>Clones</th>
<th>Control</th>
<th>CV Clones</th>
<th>CV Control</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial tenderness</td>
<td>6.7 ± 0.5(^2) (^a)</td>
<td>5.3 ± 0.6(^b)</td>
<td>8.0</td>
<td>11.4</td>
<td>NS</td>
</tr>
<tr>
<td>Tenderness during chewing</td>
<td>6.3 ± 0.6(^a)</td>
<td>5.2 ± 0.5(^b)</td>
<td>9.4</td>
<td>9.7</td>
<td>NS</td>
</tr>
<tr>
<td>Connective tissue</td>
<td>5.5 ± 0.4(^a)</td>
<td>4.6 ± 0.5(^b)</td>
<td>7.3</td>
<td>9.8</td>
<td>NS</td>
</tr>
<tr>
<td>Juiciness</td>
<td>6.3 ± 0.3(^a)</td>
<td>5.4 ± 0.5(^b)</td>
<td>4.0</td>
<td>10.2</td>
<td>NS</td>
</tr>
<tr>
<td>Fattiness</td>
<td>6.7 ± 0.5(^a)</td>
<td>5.2 ± 0.8(^b)</td>
<td>7.3</td>
<td>14.7</td>
<td>NS</td>
</tr>
<tr>
<td>Overall texture</td>
<td>6.2 ± 0.4(^a)</td>
<td>5.2 ± 0.5(^b)</td>
<td>6.1</td>
<td>8.9</td>
<td>NS</td>
</tr>
<tr>
<td>Flavor</td>
<td>5.6 ± 0.2(^a)</td>
<td>4.9 ± 0.3(^b)</td>
<td>4.2</td>
<td>5.7</td>
<td>NS</td>
</tr>
</tbody>
</table>

\(^1\) Sensory traits was evaluated over eight scales.
\(^2\) means ± SD
\(^a,b\) indicates a significant difference between clones and controls (\(P < 0.01\))
CV : coefficient of variation
NS : not significant (\(P > 0.05\))

Table 6 Sequence variation of mitochondrial genomes and intramuscular fat contents in each somatic cell clone

<table>
<thead>
<tr>
<th>Slaughter age, mo</th>
<th>IMF(^1), %</th>
<th>Base position</th>
<th>Standard(^2)</th>
<th>Clones</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone-1</td>
<td>20</td>
<td>24.9</td>
<td>Type 1(^3)</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Clone-2</td>
<td>20</td>
<td>25.6</td>
<td>Type 1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Clone-3</td>
<td>20</td>
<td>20.7</td>
<td>Type 1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Clone-4</td>
<td>25</td>
<td>42.7</td>
<td>Type 2</td>
<td>C G G</td>
<td>T C T C C</td>
</tr>
<tr>
<td>Clone-5</td>
<td>25</td>
<td>39.2</td>
<td>Type 2</td>
<td>C G G</td>
<td>T C T C C</td>
</tr>
<tr>
<td>Clone-6</td>
<td>25</td>
<td>36.7</td>
<td>Type 1</td>
<td>C C</td>
<td>C</td>
</tr>
<tr>
<td>Clone-7</td>
<td>25</td>
<td>36.4</td>
<td>Type 1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Clone-8</td>
<td>30</td>
<td>44.0</td>
<td>Type 2</td>
<td>C G G</td>
<td>T C T C C</td>
</tr>
<tr>
<td>Clone-9</td>
<td>30</td>
<td>41.7</td>
<td>Type 2</td>
<td>C G G</td>
<td>T C T C C</td>
</tr>
<tr>
<td>Clone-10</td>
<td>30</td>
<td>40.8</td>
<td>Type 1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Clone-11</td>
<td>30</td>
<td>38.1</td>
<td>Type 1</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

\(^1\) Intramuscular fat content in *longissimus muscle*

\(^2\) Standard as defined by Anderson et al. (1982).

\(^3\) Mitochondrial types are defined by the phylogenetic tree in Figure 4.

Figure 4 Phylogenetic tree demonstrating the relationship between the nucleotide sequences of the mitochondrial displacement loop in somatic cell cloned cattle.
組み始められている種牛選抜（森安 2010）などへのクローン技術の有効な利活用が可能になると思われる。

謝 謝

本研究の実施にあたり、飼養管理、理化学分析にご協力いただきました家畜改良センター十勝牧場の斎藤宏明氏、角屋敏幸氏、火ノ川光春氏、原田真吾氏、近藤文之氏、守屋隆也氏、同センター本所の中山佐智雄氏、佐藤進司氏、後藤友美氏、赤井田満氏、官能評価にご協力をいただきましたパネリストの方々、統計解析にご助言いただきました家畜改良センターの井上慶一氏に深謝いたします。

文 献

福川本典, 田中正嗣. 2003. 肥満に関連するミトコンドリア多形: 肥満研究 9, 88–89.

家畜改良センター. 2010. 食肉の理化学分析及び官能評価マニュアル. 家畜改良センター, 福島.

森安 悟. 2010. 黒毛和種種牛生産に向けてのクローン検定の利用. 日本畜産学会報 81, 53–64.

奥村幸夫, 波田真乃, 斋藤宏明, 屋根敏幸, 火ノ川和幸, 原田真吾, 近藤和則, 中岡正志, 藤崎吉弘, 高橋奈緒子, 山田信一, 河村正一, 井上慶一, 三好さき, 佐久間弘誠, 石池久, 山内健治. 2009. 黒毛和種種牛経肉における脂質アンケート調査. 肉用牛研究会報 87, 47–51.

日畜会報 81 (4) : 431–442, 2010 440
体細胞クローン牛の発育と肉質

Evaluation of growth characteristics and meat quality in somatic cell cloned Japanese black fattening steers

Toshiaki OKUMURA¹, Mizuno HADA¹, Kaoru SAITO¹, Yoshihiro FUJISHIMA¹, Naoko TAKAHASHI¹, Nanae TAMEOKA¹, Tsuyoshi ABE¹, Muneyuki HIRAYAMA¹, Kazuya TAKEDA¹, Taku SOWA¹, Hironori SAKUMA¹, Tadashi KAWAMURA¹, Eiji KOBAYASHI¹, Kenji YAMAUCHI¹, Shinichi YAMADA¹ and Kazuyuki KONISHI¹

¹ National Livestock Breeding Center, Nishigo, Fukushima 961–8511, Japan

Corresponding: Shinichi YAMADA (fax: +81 (0) 248 25 3900, e-mail: s1yamada@nlbc.go.jp)

Growth characteristics and meat quality in Japanese black somatic cell cloned cattle were investigated in 11 clone-derived animals, the original donor animal and nine conventional cattle. The coefficients of variation (CV) of growth characteristics for body weight, withers height and chest girth in the clones were lower than those of the conventional control animals. The CVs of carcass characteristics, including beef marbling standard number (BMS No.), in the clones were lower than those of the controls. The CVs of almost all physicochemical traits analyzed, except for collagen and muscle fiber, and sensory traits in the longissimus muscle, were lower in the clones than those of the controls. All growth characteristics were similar between clones and controls (P > 0.05). Although there were statistical differences between clones and controls in many meat qualities, there was no remarkable biological difference; indeed, most differences were caused by alterations in intramuscular fat content as a result of genetic background. Furthermore, there is a possibility that mitochondrial DNA affected intramuscular fat deposition, although its effect might be slight. High similarities between clones and the original donor in growth and carcass characteristics were recognized. These results suggested that the similarity among the somatic cell clones in growth characteristics and meat quality was high, and that growth characteristics and meat quality derived from somatic cell clones were similar to those from in conventional cattle.

Nihon Chikusan Gakkaiho 81 (4), 431–442, 2010

Key words: growth characteristics, meat quality, normal level, similarity, somatic cell clone.