乾乳期短縮が泌乳前期の乳量・乳成分、血液成分、
疾病発生および繁殖性に及ぼす影響

中村正斗¹・中島恵一¹・高橋雄治²

¹ 北海道農業研究センター、札幌市豊平区 062-8555
² 動物衛生研究所、つくば市 305-0856

(2010. 7. 8 受付、2010. 10. 25 受理)

要約　ホルスタイン種乳牛の乾乳期 30 日での短縮が、次の泌乳前期の乳量・乳成分、TDN 充足率、血液成分、疾病発生および繁殖性に及ぼす影響を明らかにするため、分娩前 2 ヶ月から分娩後 3 ヶ月まで飼育試験を行った。短縮区は泌乳後期牛 14 頭を用い、グラスサイレージ（GS）主体給与で搾乳日数を延長、分娩予定の 30 日前に乾乳し、乾乳後は分娩まで草乾、GS、配合飼料を給与した。対照区は平均乾乳期 110 日の乾乳牛 14 頭を用い、分娩前 1 ヶ月までは乾草のみ、それ以後は短縮区と同じ飼料構成で給与した。分娩後は両区とも GS と配合飼料を混合して断絶給餌した。その結果、乾乳期 30 日での短縮は、泌乳前期の乳量が抑制され（P < 0.05）、乳タンパク質率が増加し（P < 0.05）、体重減少やポディコンディションスコアの低下が小さく（P < 0.05）、血液成分では血糖値が上昇傾向（P < 0.10）、遊離脂肪酸濃度が低下（P < 0.05）を示し、泌乳前期の栄養状態の改善が推察された。また短縮区は対照区に比べ泌乳前期の TDN 充足率が上昇する傾向（P < 0.10）を示した。繁殖性と疾病発生に及ぼす乾乳期短縮の悪い影響は認められなかったが、短縮区の在胎日数が短かった（P < 0.05）。

日本畜産学会 82 (1), 25-34, 2011

日本畜産学会 82 (1), 25-34, 2011

伝道者：中村正斗（fax：011-859-2178, e-mail: masaton@affrc.go.jp）
材料および方法

1. 供試家畜、飼料および飼育管理

2007−2009年、北海道農業研究センター（札幌市）で飼養するホルスタイン種初産牛12頭、経産牛16頭を供試し、分娩前2ヵ月から分娩後3ヵ月まで飼育試験を行った。試験牛は分娩予定日の1週間前から分娩翌日まで分娩前で飼養したが、それ以外の期間はゴムマット床のストールにネットチェーンでつなぎ飼育した。短縮区は泌乳後期牛14頭（初産牛6頭、経産牛8頭）を用い、プラスサイレージ（GS）主体の混合飼料（粗栄養比3:1）を断続給餌で摂取力を適宜増減し、給食期間を平均337日とした後、乾乳期を30日とした。乾乳後は分娩まで、乾草とGSは断続給餌、配合飼料を制限給餌した。対照区は平均306日摂乳後の乾乳期が平均110日となった乾乳牛14頭（初産牛6頭、経産牛8頭）を用い、分娩前3ヵ月までの乾乳前期は乾草のみを断続給餌し、分娩前1ヵ月から乾乳後期は短縮区と同じ飼料構成で給餌した。両区ともに分娩から分娩6日後までは配合飼料を1日当たり0.5kgずつ増給した。両区ともに分娩7日以降は、乾草比でGSと配合飼料を6:4で混合し、残餌量/給与量が原料で10%を目標に断続給餌した。飼料は1日2回分け、9:00と17:00に給与した。水およびミネラル添加塩は自由摂取させた。

GSと乾草は1番草のオーチャードグラス主体のイネ科混播草を用い、GSはタワーサイロで細断調整した。配合飼料は単位濃度飼料を自家配合した。試験用の各飼料の成分値を表1、対照区および短縮区の試験飼料の乾物構成比と成分値を表2に示す。動物の飼育管理ならびに本研究での実験は、独立行政法人農業・食品産業技術総合研究機構動物実験等指針ならびに北海道農業研究センター動物実験等実施要領に従って行った。

2. 測定項目

体重およびポディコンディションスコア（BCS）（Fergusonら1994）は週1回測定し、さらに分娩直後の体重を測定した。採血は、週1回9:00に頚靜脈から真空採血管を用いて行い、血液は30分間室温で静置後、4℃。

Table 1 Nutrient composition of silage, hay and concentrate

<table>
<thead>
<tr>
<th>Nutrient composition</th>
<th>DM</th>
<th>OM</th>
<th>CP</th>
<th>ADF</th>
<th>NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass silage</td>
<td>26.6</td>
<td>90.8</td>
<td>14.5</td>
<td>36.9</td>
<td>59.0</td>
</tr>
<tr>
<td>Hay</td>
<td>83.3</td>
<td>93.2</td>
<td>9.6</td>
<td>39.0</td>
<td>66.9</td>
</tr>
<tr>
<td>Concentrate</td>
<td>86.5</td>
<td>95.1</td>
<td>19.0</td>
<td>9.6</td>
<td>15.5</td>
</tr>
</tbody>
</table>

DM：Dry matter, OM：Organic matter, CP：Crude protein, ADF：Acid detergent fiber, NDF：Neutral detergent fiber

Table 2 Foodstuff and nutrient composition of diets

<table>
<thead>
<tr>
<th>Foodstuff (%) DM</th>
<th>Preparum (2 to 1 month)</th>
<th>Preparum (1 month)</th>
<th>Postpartum (3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control†</td>
<td>Shortened‡</td>
<td>Control</td>
<td>Shortened</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Grass silage</td>
<td>--</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Hay</td>
<td>100</td>
<td>--</td>
<td>36</td>
</tr>
<tr>
<td>Concentrate</td>
<td>--</td>
<td>25</td>
<td>14</td>
</tr>
</tbody>
</table>

Nutrient composition (DM)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Control</th>
<th>Shortened</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>83.3</td>
<td>41.6</td>
</tr>
<tr>
<td>OM (%)</td>
<td>93.2</td>
<td>91.9</td>
</tr>
<tr>
<td>CP (%)</td>
<td>9.6</td>
<td>15.6</td>
</tr>
<tr>
<td>ADF (%)</td>
<td>39.0</td>
<td>30.1</td>
</tr>
<tr>
<td>NDF (%)</td>
<td>66.9</td>
<td>48.1</td>
</tr>
<tr>
<td>TDN (%)</td>
<td>60.0</td>
<td>67.9</td>
</tr>
</tbody>
</table>

DM: Dry matter, **OM**: Organic mater, **CP**: Crude protein, **ADF**: Acid detergent fiber, **NDF**: Neutral detergent fiber

† Concentrate fed as top dressing on grass silage, and hay fed for *ad libitum* intake in both treatment during 1 month prepartum.
‡ TMR fed for *ad libitum* intake in both treatments during 3 months postpartum, and TMR fed for *ad libitum* intake in shortened dry period from 2 to 1 month prepartum.
§ Hay fed for *ad libitum* intake in control dry period from 2 to 1 month prepartum.

TDN is calculated using estimating equations of NRC (2001).

日畜会報 82（1）：25−34, 2011 26
乳牛の乾乳期短縮

3000 rpm で 15 分間遠心して血清分離し、分析まで -30℃ で凍結保存した。血清は解凍後、自動生化学分析装置（7020 型：日立製作所、東京）を用いて総コレステロール、総ホルモン、尿酸、尿素窒素、カルシウムおよび無機リン濃度を測定した。血糖測定用の血液はフッ化ナトリウム入りの真空採血管で採血し、直ちに 4℃, 3000 rpm で 15 分間遠心して血漿を分離した。血漿は -30℃ で凍結保存し、解凍後フルコース C II テストワゴー（和光純薬工業、大阪）により血糖値を測定した。

飼料摂取量は給与量と残飼量を毎日秤量し、乾物率を測定し乾物摂取量（DMI）を算出した。乳量は 9.00 と 19.00 の 1 日 2 回の搾乳時に計測し、1 日分の乳成分をミルコスキャン（FT-120：Foss Electric、ヒレロッド・デンマーク）で、乳中体細胞数を体細胞数測定装置（フォスマチック 90；Foss Electric）で測定した。

日本乳業標準乳牛（2006 年版）（農業・食品産業技術総合研究機構 2007b）により TDN 要求量を求め、TDN 摂取量に対する充足率を、分婏後 7 日目を第 1 週とした分婏後 12 週間および分婏後 9 週間について求めた。

疾病発生状況は、一見分婏の有無、分婏後の乳熟および乳質炎発症を調査した。繁殖性は、分婏後の初回発情日数、初回授乳日数、空胞日数および妊娠までの授乳日数を調査した。また子牛の在棲日数および生体重を調査した。なお、初回授乳は分婏後 70 日以上経過後に実施した。

3. 統計処理

得られた数値は統計解析ソフト JMP（SAS Japan、東京）を用い、成牛の基準から、成長中の 2 産牛と 3 産以上のウシとを分けて、ウシの産次と乾乳期を処理因子とした 二元配置分散分析を行い解析した。乳量、TDN 充足率、体重および BCS は分婏後 7 週ごとに、ウシの産次と乾乳期を処理因子とした二元配置分散分析を行い解析した。血液成分は分婏前 4 週〜分婏後 1 週〜5 週および分婏後 6〜12 週の各個体の平均値について、ウシの産次と乾乳期を処理因子とした二元配置分散分析を行い解析した。ウシの産次と乾乳期の効果の交互作用が有意な場合は、平均値の差の検定は Student の t 検定により行った。また、疾病発生率の差の検定は 2 産と 3 産以上に分けて Fisher の直接確率計算法を用いた。検定結果は、危険率 5% 未満の場合有意差があるものとみなし、危険率 10% 未満の場合には傾向があるものとみなした。

結果

DMI、体重比（%）は、分婏後 12 週までの平均で区間に有意差を認めなかったが、TDN 充足率は短縮区が対照区より高い傾向（P < 0.10）を示した（図 3）。TDN 充足率を分婏後 9 週〜分婏後 12 週までデータとして示すると、7 週での比較で区間に有意差（P < 0.05）が認められた（図 1）。なお分婏後 9 週から 5 週まで搾乳日数を延長した短縮区の TDN 充足率は 90〜120% であったのに対し、乾乳していた対照区の TDN 充足率は 140〜160% と有意（P < 0.05）に高かった（図 1）。

分婏後 12 週間の平均乳量と 4% 乳脂補正乳量は、短縮区が対照区に比べ有意（P < 0.05）に低く、2 産は 3 産

Table 3 DMI, TDN sufficiency rate, milk yield, and milk composition during early lactation of Holstein cows exposed to different dry period lengths

<table>
<thead>
<tr>
<th></th>
<th>Parity-2</th>
<th>Parity-3+</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Shortened</td>
<td>Control</td>
</tr>
<tr>
<td>Cows (no.)</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>DMI (% BW)¹</td>
<td>3.52</td>
<td>3.65</td>
<td>3.56</td>
</tr>
<tr>
<td>DMI (kg/day)²</td>
<td>22.4</td>
<td>21.4</td>
<td>23.9</td>
</tr>
<tr>
<td>TDN sufficiency rate (%)³</td>
<td>79.4</td>
<td>87.4</td>
<td>81.9</td>
</tr>
<tr>
<td>Milk yield (kg/day)⁴</td>
<td>41.4</td>
<td>35.6</td>
<td>44.0</td>
</tr>
<tr>
<td>FCM (kg/day)⁵</td>
<td>40.6</td>
<td>34.9</td>
<td>43.4</td>
</tr>
<tr>
<td>Milk protein (%⁶)</td>
<td>2.83</td>
<td>3.08</td>
<td>2.85</td>
</tr>
<tr>
<td>Milk fat (%)⁷</td>
<td>3.88</td>
<td>3.88</td>
<td>3.93</td>
</tr>
<tr>
<td>SNF (%)</td>
<td>8.41</td>
<td>8.65</td>
<td>8.43</td>
</tr>
<tr>
<td>SCC (x1000)²⁸</td>
<td>140</td>
<td>236</td>
<td>288</td>
</tr>
</tbody>
</table>

¹During 1 to 12 weeks postpartum.
²FCM : four percent fat-corrected milk
³SNF : solid not-fat
⁴SCC : somatic cell count

日畜会報 82 (1) : 25-34, 2011, 27
Changes in TDN sufficiency rate during late gestation and 12 weeks of the subsequent lactation in cows subjected to a shortened (30-day) or control (110-day) dry period. Values that differ significantly ($P < 0.05$) between treatments are indicated with filled symbols (●, ■, △, ◆).

Figure 1

Changes in milk yield during late gestation and 12 weeks of the subsequent lactation in cows subjected to a shortened (30-day) or control (110-day) dry period. Values that differ significantly ($P < 0.05$) between treatments are indicated with filled symbols (●, △).

Figure 2
Table 4 Effect of dry period length on postpartum BCS loss and BW loss

<table>
<thead>
<tr>
<th></th>
<th>Parity-2</th>
<th></th>
<th>Parity-3+</th>
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Shortened</td>
<td>Control</td>
<td>Shortened</td>
<td></td>
</tr>
<tr>
<td>Cows (no.)</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Postpartum BCS loss¹</td>
<td>0.40 ± 0.10</td>
<td>0.23 ± 0.04</td>
<td>0.41 ± 0.10</td>
<td>0.29 ± 0.12</td>
<td>0.0012</td>
</tr>
<tr>
<td>Postpartum weeks at minimum BCS</td>
<td>8.8 ± 2.2</td>
<td>5.0 ± 1.3</td>
<td>8.6 ± 2.1</td>
<td>6.6 ± 2.2</td>
<td>0.0011</td>
</tr>
<tr>
<td>Postpartum BW loss (kg)²</td>
<td>84 ± 12</td>
<td>59 ± 20</td>
<td>110 ± 21</td>
<td>80 ± 35</td>
<td>0.0077</td>
</tr>
<tr>
<td>Postpartum weeks at minimum BW</td>
<td>7.0 ± 4.1</td>
<td>4.3 ± 2.7</td>
<td>7.4 ± 3.3</td>
<td>4.9 ± 2.6</td>
<td>0.050</td>
</tr>
<tr>
<td>Mean ± standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Postpartum BCS loss = BCS at week 0 postpartum - minimum BCS postpartum.
² Postpartum BW loss (kg) = BW at week 0 postpartum - minimum BW postpartum.

Figure 3 Changes in relative body weight during late gestation and 12 weeks of subsequent lactation in cows subjected to a shortened (30-day) or control (110-day) dry period. Values that differ significantly (P < 0.05) between treatments are indicated with filled symbols (■, ◆).

考 察

我々の当初の仮説は、乾乳期短縮により次期泌乳期のピーク乳量が減少し、分泌後のエネルギーバランスが改善され、代謝障害の発生減少や繁殖性を改善することであった。本研究の結果、乾乳期短縮に対する反応は初産牛と既産牛で若干異なるが、ともに次期泌乳期の栄養状態が改善すると考えられた。乾乳期短縮の抵抗性と繁
Changes in body condition scores during late gestation and 12 weeks of the subsequent lactation in cows subjected to a shortened (30-day) or control (110-day) dry period. Values that differ significantly (P < 0.05) between treatments are indicated with filled symbols (●, □, △, ○).

Table 5 Effect of dry period length on blood parameters during the periods −4 to 0, 1 to 5, and 6 to 12 weeks after parturition

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Time, Wk</th>
<th>Parity-2</th>
<th>Parity-3+</th>
<th>P-value</th>
<th>Parity</th>
<th>Dry period</th>
<th>Dry period × parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dL)</td>
<td>−4 to 0</td>
<td>63</td>
<td>67</td>
<td>64</td>
<td>70</td>
<td>0.0014</td>
<td>0.070 0.56</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>59</td>
<td>64</td>
<td>60</td>
<td>62</td>
<td>0.084</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>66</td>
<td>70</td>
<td>67</td>
<td>69</td>
<td>0.071</td>
<td>0.49</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>−4 to 0</td>
<td>87</td>
<td>134</td>
<td>79</td>
<td>120</td>
<td>0.0002</td>
<td>0.26 0.80</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>157</td>
<td>172</td>
<td>147</td>
<td>164</td>
<td>0.21</td>
<td>0.45 0.92</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>233</td>
<td>235</td>
<td>215</td>
<td>248</td>
<td>0.42</td>
<td>0.90 0.47</td>
</tr>
<tr>
<td>NEFA (µEq/L)</td>
<td>−4 to 0</td>
<td>243</td>
<td>272</td>
<td>284</td>
<td>298</td>
<td>0.48</td>
<td>0.27 0.79</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>674</td>
<td>573</td>
<td>777</td>
<td>634</td>
<td>0.19</td>
<td>0.37 0.82</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>358</td>
<td>232</td>
<td>347</td>
<td>301</td>
<td>0.011</td>
<td>0.36 0.21</td>
</tr>
<tr>
<td>Total ketone body (µmol/L)</td>
<td>−4 to 0</td>
<td>663</td>
<td>651</td>
<td>660</td>
<td>643</td>
<td>0.76</td>
<td>0.91 0.96</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>1231</td>
<td>978</td>
<td>1195</td>
<td>918</td>
<td>0.088</td>
<td>0.75 0.94</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>754</td>
<td>710</td>
<td>862</td>
<td>759</td>
<td>0.39</td>
<td>0.36 0.73</td>
</tr>
<tr>
<td>Total protein (g/dL)</td>
<td>−4 to 0</td>
<td>6.7</td>
<td>7.5</td>
<td>7.2</td>
<td>7.9</td>
<td>0.0078</td>
<td>0.080 0.92</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>7.5</td>
<td>7.9</td>
<td>8.0</td>
<td>8.1</td>
<td>0.21</td>
<td>0.18 0.50</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>7.8</td>
<td>8.1</td>
<td>8.3</td>
<td>8.1</td>
<td>0.83</td>
<td>0.23 0.27</td>
</tr>
<tr>
<td>Urea N (mg/dL)</td>
<td>−4 to 0</td>
<td>11.2</td>
<td>9.9</td>
<td>10.1</td>
<td>9.3</td>
<td>0.090</td>
<td>0.15 0.63</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>10.2</td>
<td>11.5</td>
<td>9.0</td>
<td>10.1</td>
<td>0.21</td>
<td>0.18 0.94</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>11.5</td>
<td>11.3</td>
<td>10.1</td>
<td>11.3</td>
<td>0.64</td>
<td>0.55 0.54</td>
</tr>
<tr>
<td>Calcium (mg/dL)</td>
<td>−4 to 0</td>
<td>10.0</td>
<td>10.2</td>
<td>9.7</td>
<td>10.1</td>
<td>0.14</td>
<td>0.30 0.50</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>10.5</td>
<td>10.2</td>
<td>10.3</td>
<td>10.2</td>
<td>0.59</td>
<td>0.51 0.39</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>10.6</td>
<td>10.6</td>
<td>10.2</td>
<td>10.5</td>
<td>0.48</td>
<td>0.14 0.31</td>
</tr>
<tr>
<td>Pi (mg/dL)</td>
<td>−4 to 0</td>
<td>4.7</td>
<td>4.9</td>
<td>4.0</td>
<td>4.6</td>
<td>0.14</td>
<td>0.081 0.50</td>
</tr>
<tr>
<td></td>
<td>1 to 5</td>
<td>3.6</td>
<td>3.4</td>
<td>3.1</td>
<td>3.5</td>
<td>0.60</td>
<td>0.50 0.20</td>
</tr>
<tr>
<td></td>
<td>6 to 12</td>
<td>3.6</td>
<td>3.6</td>
<td>3.1</td>
<td>3.8</td>
<td>0.20</td>
<td>0.53 0.18</td>
</tr>
</tbody>
</table>

1 Wk: Week relative to parturition.
乳牛の乾乳期短縮

殖性に及ぼす改善効果は必ずしも明確ではなかったが、悪影響は認められず、栄養状態や血清性状から、抗病性の改善や繁殖性向上が示唆される成績を得た。

北海道農業研究センターの牛群は一産期 335 日を標準乳を恒行としていたため、対照群の乾乳期は標準的な 60 日ではなく、2 産で 118 ± 26 日、3 産以上で 105 ± 36 日であった（表 7）。この乾乳期間に対して 30 日間に短縮した結果、泌乳期（分娩後 3 カ月間）の泌乳量が有意（P < 0.05）に低下するが、低下程度は 3 産以上のウシよりも 2 産のウシで大きかった（表 3）。乾乳期を 55～60 日から 30～35 日に短縮したこれまでの研究（Gulay ら 2003；Annen ら 2004；Rastani ら 2005；Pezeshki ら 2007；Watters ら 2008）と本研究結果は類似していた。初産牛は体が成長中のため、乳腺の退行と再増殖に要する期間が既往牛とは異なっている可能性がある。乾乳期 30 日間では不十分であると推察される。

一方、泌乳期前の体重増加の DMI は区間で有意差はなかったが、短縮群の TDN 充足率が上昇する傾向（P < 0.10）が認められた（表 3）。これらの結果は、乾乳期 28 日から 20 日に短縮したウシが分娩後のエネルギーバランスを改善したという Rastani ら（2005）の報告を支持するものであり、乾乳期短縮による泌乳前期の産乳量低下にその主因が求められるよう。

本研究の結果、分娩前の血糖値、血清総コレステロール濃度および血清総タンパク質濃度は短縮区が有意（P < 0.05）に高く、分娩後も血糖値は短縮区が高い傾向（P < 0.10）が認められた（表 5）。Rastani ら（2005）は乾乳期を 28 日間に短縮した乳牛は、分娩後 56 日間に比べ、分娩後の血圧値が高い傾向であったと報告している。一般に血圧値は摂取栄養を反映することから、乾乳期短縮により分娩後の栄養状態が改善されたと考えられる。一方、分娩後 1～3 週の血清総ケトン体濃度は短縮区が低い傾向（P < 0.10）を示し、分娩後 6～12 週の血清 NEFA 濃度は短縮区が対照群に比べ有意（P < 0.05）に低かっ（表 5）。Watters ら（2008）は乾乳期短縮した乳牛で、分娩後の NEFA 濃度が、慣行の乾乳期間のウシに比べて低下しと報告している。分娩前後の乳牛は、食欲の低下や激的な乳量の増加などにより、要求量を満たすだけのエネルギーを得ることが困難であったため、負のエネルギーバランス状態にある（Grummer 1995）。この状態では不足する

Table 6 Effect of dry period length on incidence of metabolic disorders

<table>
<thead>
<tr>
<th>Item</th>
<th>Parity-2</th>
<th>Parity-3+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Shortened</td>
</tr>
<tr>
<td>Traction delivery</td>
<td>2/6</td>
<td>2/6</td>
</tr>
<tr>
<td>Milk fever</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>Clinical mastitis during next lactation</td>
<td>4/6</td>
<td>3/6</td>
</tr>
</tbody>
</table>

1 One cow excluded due to milk fever.

Table 7 Effect of dry period length on fertility in lactating dairy cows

<table>
<thead>
<tr>
<th>Item</th>
<th>Parity-2</th>
<th>Parity-3+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Shortened</td>
</tr>
<tr>
<td>Cows (no.)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Previous lactation period (day)</td>
<td>305 ± 1</td>
<td>339 ± 17</td>
</tr>
<tr>
<td>Dry period (day)</td>
<td>118 ± 26</td>
<td>27 ± 4</td>
</tr>
<tr>
<td>Days to first heat</td>
<td>39 ± 17</td>
<td>53 ± 20</td>
</tr>
<tr>
<td>Days in first service</td>
<td>103 ± 33</td>
<td>86 ± 10</td>
</tr>
<tr>
<td>Days open</td>
<td>110 ± 41</td>
<td>90 ± 12</td>
</tr>
<tr>
<td>Services per conception (no.)</td>
<td>1.2 ± 0.4</td>
<td>1.2 ± 0.4</td>
</tr>
<tr>
<td>Gestation length (day)</td>
<td>264 ± 2</td>
<td>278 ± 4</td>
</tr>
<tr>
<td>Calf body weight (kg)</td>
<td>46.0 ± 4.9</td>
<td>46.7 ± 3.4</td>
</tr>
</tbody>
</table>

Mean ± standard deviation

* Two means with different superscript letters are significantly different (P < 0.05).
* One cow did not inseminate due to digital disorder.
* Three cows did not inseminate due to digital disorder.
* One cow excluded due to repeat breeder.
* One cow excluded due to milk fever.
* One cow did not inseminate due to digital disorder.

日畜会報 82 (1) : 25-34, 2011
31
エネルギーを補うため、脂肪組織での脂肪の分解が進む。その結果、血中に放出された遊離脂肪酸は、肝素に取り込まれてカトン体になる。泌乳初期の負のエネルギーバランスによる体脂肪動員が生理的限界を超えた場合、ケトーシスや脂肪肝などの代謝障害が起こると報告されている（Goff と Horst 1997）。したがって、短縮区の分娩後6〜12週の血清NEFA濃度が対照区に比べ低かったのは、負のエネルギーバランスが小さかったためと考えられた。

本研究の結果、短縮区の泌乳初期の乳タンパク質率が有意（P < 0.05）に高かった（表3）。Annenら（2004）、Rastaniら（2005）およびWattersら（2008）は乾乳期短縮した乳牛で、泌乳泌乳期の泌乳初期の乳タンパク質率が増加することを報告しており、本研究の結果は彼らの報告と同様であった。一般に乳タンパク質率は摂取栄養を反映することから、短縮区の泌乳初期の乳タンパク質率が増加した要因の1つとして、泌乳期初の栄養状態が改善したことが考えられる。

本研究の結果、分娩後の体重およびBSCはと共に短縮区で変動が小さく（図3、図4）、分娩後のBSC減少幅は短縮区有意（P < 0.05）に小さく、BSCが最終となる週も短縮区有意（P < 0.05）に早かった（表4）。また、分娩後の短縮区の体重減少は対照区に比べ有意（P < 0.05）に小さく、体重が最終となる週も短縮区有意（P < 0.05）に早かった（表4）。乾乳期を55〜60日から28〜34日に短縮したこの研究（Galayら2003；Rastaniら2005；Wattersら2008）は、乾乳期短縮により分娩後の体重およびBSCの減少が小さかったことを報告しており、本研究結果は過去の知見と同様の傾向を認めた。乾乳期短縮により分娩後のエネルギーバランスが改善したことが、分娩後の体重およびBSCの早期回復に繋がったと推察された。

本研究の結果、繁殖性では、短縮区の3%以上のウシの初回発情日数が対照区に比べ有意（P < 0.05）に短かったが、初回授精日数、空胎日数および受胎までの授精回数には乾乳期間による差は認められず、各区とも概ね良好な繁殖成績を示していた（表7）。短縮区の2%の平均初回発情日数が対照区より長かったのは、短縮区に初回発情が分娩後1日と著しく遅れた個体を含んでいたことによる。乾乳期55〜60日を28〜34日に短縮した過去の知見では、初回排卵日数（Gümenら2005；Wattersら2009）、初回発情日数（Annemら2004）、初回授精日数（Gümenら2005；Wattersら2009）、空胎日数（Annemら2004；Gümenら2005；Wattersら2009）が短くなり、分娩後17週までの受胎率向上（Annemら2004）が報告されている。本研究で初回授精日数および空胎日数に乾乳期間による差がなかったのは、初回授精を分娩後70日以降に実施したことが主たる要因と考えられる。

本研究では、短縮区の泌乳日数が有意（P < 0.05）に短かった（表7）、Wattersら（2009）は乾乳期の長さで泌乳日数に違いがなかったと報告している。本研究で乾乳期短縮により泌乳日数が短縮した原因は不明であるが、短縮区の分娩前のBSCが対照区に比べ有意（P < 0.05）に低かった（図4）ことが関係しているかもしれない。

以上から、乾乳期30日への短縮は、泌乳期前期の乳量が抑えられ、乳タンパク質率が増加し、分娩後の体重減少やBSC低下が小さく、血液成分では分娩後の血糖値が上昇、NEFA濃度が低下しやすく、ネフクリーの栄養状態の改善が示唆された。乾乳期短縮は、乾乳期前後期の長期間の栄養管理の単純化が図られるメリットがあるが、短縮による栄養状態の変動を小さくし、安定化するメリットもある。しかし、栄養状態の栄養状態の改善により、本研究では明確でなかったが、抗病性や繁殖性を改善する可能性がある一方、産乳量が低下するという経済的なメリットも指摘される。

近年、泌乳期前期の乳量を抑え、その分を泌乳中後期に補償する低ピーク高持続型乳牛に改良するために、家畜改良センターより種雄牛の泌乳持続性の育種評価体系が表されている（家畜改良センター2010）。乾乳期短縮による泌乳期前期の低ピーク型の乳量抑制が泌乳中後期の泌乳持続性によって補償可能かどうかを今後の研究が求められている。

謝辞

本論文をまとめにあたり、ご校閲いただきました北海道農業研究センター早坂貴代史自給飼料酪農研究チーム長に深謝いたします。また、供試牛の飼養管理を担当していただいた北海道農業研究センター業務第1科の皆様に感謝の意を表します。

なお、本研究は交付金プロジェクト「高持続型泌乳パーソンを作り・増幅する短縮した乾乳期の飼養管理技術の提示」（課題番号226-1220）で得られた成果の一部を取りまとめたものである。

文献

Ferguson JD, Galligan DT, Thomsen N. Principal descriptors of body condition score in Holstein cows. Journal of Dairy Science 87, 3746–3761.

Effects of short dry period on performance, metabolic profiles, health and reproduction during the subsequent early lactation in Holstein cows

Masato NAKAMURA¹, Kei-ichi NAKAJIMA¹ and Yuji TAKAHASHI²

¹ National Agricultural Research Center for Hokkaido Region, Toyohira, Sapporo 062–8555, Japan
² National Institute of Animal Health, Tsukuba, Ibaraki 305–0856, Japan

Corresponding : Masato NAKAMURA (fax : +81 (0) 11-859-2178, e-mail : masaton@affrc.go.jp)

We evaluated the effects of a short dry period on milk yield, milk composition, metabolic profiles, TDN sufficiency rate, body weight (BW), body condition score (BCS), health, and reproduction during subsequent early lactation in Holstein cows. Twenty-eight cows were assigned to 110-day (control, C, n = 14) or 30-day (shortened, S, n = 14) dry periods. Control cows were fed hay and S cows were fed TMR ad libitum for 30-day; then from 30-day prior until calving, both C and S cows were fed a moderate-energy transition diet. Postpartum, all cows were fed TMR ad libitum for 12 weeks. Milk yield was significantly (P < 0.05) greater in C cows. Milk protein percentage was significantly (P < 0.05) greater in S cows. Average TDN sufficiency rate tended (P < 0.10) to be greater in S cows. Both postpartum BCS loss and BW loss were significantly (P < 0.05) smaller in S cows. Both postpartum weeks at minimum BCS and minimum BW were significantly (P < 0.05) earlier in S cows. Milk protein percentage was significantly (P < 0.05) greater in S cows. Average TDN sufficiency rate tended (P < 0.10) to be greater in S cows. Both postpartum BCS loss and BW loss were significantly (P < 0.05) smaller in S cows. Both postpartum weeks at minimum BCS and minimum BW were significantly (P < 0.05) earlier in S cows. Prepartum, S cows had significantly (P < 0.05) higher serum concentrations of glucose, total cholesterol, and total protein than C cows. Postpartum, S cows tended (P < 0.10) to be higher serum concentration of glucose. During 6 to 12 weeks after parturition, S cows had significantly (P < 0.05) lower serum concentrations of NEFA. Among parity-3+ cows, the first heat occurred significantly (P < 0.05) earlier in S cows. However, days in first-service, days open, services per conception, and incidence of metabolic disorders did not differ between treatments. Calf BW did not differ between treatments, but gestation length was significantly (P < 0.05) shorter in S cows. Therefore, a 30-day dry period improves nutritional status during the subsequent early lactation in high-producing dairy cows.

Key words : animal health, dry period length, metabolic profile, milk production, reproduction.