Experimental studies on the formation of carbon dioxide in interstellar molecular clouds

Yasuhiro Oba*, Naoki Watanabe*, Akira Kouchi*, Tetsuya Hama* and Valerio Pirronello**

* Institute of Low Temperature Science, Hokkaido University
 N19W8 Kita-ku, Sapporo, Hokkaido 060-0819, Japan
** Dipartimento di Fisica e Astronomia, Università di Catania,
 95125 Catania, Sicily, Italy

Since the first detection in interstellar medium in 1989, solid CO₂ has been found in various lines of sight and regarded as one of the main constituent in icy grain mantles in interstellar clouds. Due to the low efficiency in the formation of CO₂ in the gas phase and relatively high abundance of CO in icy grain mantles, it is generally accepted that CO₂ forms on the surface of icy grain mantles in interstellar clouds. CO₂ formation on/ in icy grain mantles has been extensively studied experimentally, with the aid of energetic sources such as UV or cosmic-rays, and also without them. In this review, we summarize experimental results on the formation of CO₂ on cold surfaces through energetic and non-energetic processes under the simulated conditions of interstellar molecular clouds.

Key words: Carbon dioxide, Hydroxyl radical, Carbon monoxide, Carbonic acid, Surface reaction, Dense molecular cloud,
10^3～10^5 cm^2程度であり、さらに、その温度は10 K程度という、超高真空、極低温の環境である。分子雲の初期には、水素 (H), 酸素 (O), 炭素 (C), 塩素 (N) 原子等が気相に存在し、固体としてはケイ酸塩や炭素物質などが微粒子（星間雲）として存在している。時間の経過とともに、気相の原子・分子・ラジカル等が固体表面に吸着し、互いに反応することで、多くの分子種が形成される。その結果、ケイ酸塩などの固体を取り巻く、厚さが0.1 μm程度の氷の層（星間雲アイスメント）が形成される（Greenberg, 1998）。Table 1に、星間分子雲で観測されているアイスメントを構成する主要な分子を示す（Gibb et al., 2004）。一酸化炭素（CO）以外の主な成分（水（H_2O）、CO、アンモニア（NH_3）など）は気相反応のみではその存在量を説明することができず、星間雲表面での反応で生成したと考えられている（Hasegawa et al., 1992）。たとえば、主成分であるH_2Oは主に、O原子、O_3、およびオゾン（O_3）へのH原子付加反応によって生成される（Tielens and Hagen, 1982; Miyachi et al., 2008; Ioppolo et al., 2008; Oba et al., 2009; Mokrane et al., 2009; Dulieu et al., 2010; Romanzin et al., 2011）。O_3へのH原子付加反応による水生成に関する詳細は、大場ほか（2009）を参照されたい。

赤外線天文衛星 IRAS によって、星間空間の固体CO_2が最初に発見されたのは1989年のことであった（d'Hendecourt and Muizon, 1989）。これは、最初の固体H_2Oの発見（Légaré et al., 1979）からおよそ10年後のことである。CO_2はアイスメントの主要な構成成分（H_2Oに対して10～30%, Gibb et al., 2004; Pontoppidan et al., 2008, Table 1）であるにもかかわらず、その発見がH_2Oの発見から10年も遅れたのは、地上からの観測では、大気中CO_2の影響を排除することができなかったためである（d'Hendecourt and Muizon, 1989）。アイスメント中CO_2の存在量は気相反応のみでは説明することができず（Hasegawa et al., 1992）、さらにその原因となるCOもアイスメント中の主要な構成成分のひとつであるため（Table 1）、星間分子雲におけるCO_2は星間雲表面での反応で生成されたと考えられている。ちなみに、気相のCO_2量は固相CO_2量の5%未満である（van Dishoeck et al., 1996）。また、CO_2を含む擬似星間雲アイスメントへの紫外線（UV）照射によって、アミノ酸前駆物質の生成が確認されている（たとえば、Caro et al., 2002）。このように、CO_2は、宇宙空間での前生物的な化学進化においても重要な役割を担うと考えられる。

星間雲表面での代表的なCO_2生成経路として、CO同士の反応、COとO原子の反応、そしてCOとラジカル（OH）との反応が考えられている。

\[
\begin{align*}
\text{CO} + \text{CO}^* &\rightarrow \text{CO}_2 + \text{C} \\
\text{CO} + \text{O} &\rightarrow \text{CO}_2 \\
\text{CO} + \text{OH} &\rightarrow \text{CO}_2 + \text{H} \\
\text{CO}_2 &\rightarrow \text{CO} + \text{O}
\end{align*}
\]

Table 1 Relative abundances of major molecules found in interstellar clouds (H_2O = 100) (Gibb et al., 2004).

<table>
<thead>
<tr>
<th>Source</th>
<th>W33A</th>
<th>AFGL 989</th>
<th>Sgr A*</th>
<th>Elias 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2O</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CO</td>
<td>8.1</td>
<td>18.7</td>
<td><12^a</td>
<td>5</td>
</tr>
<tr>
<td>CO_2</td>
<td>13.2</td>
<td>34</td>
<td>13.7</td>
<td>20</td>
</tr>
<tr>
<td>H_2CO</td>
<td>3.1</td>
<td>2.3</td>
<td><2.4^a</td>
<td><1.8^a</td>
</tr>
<tr>
<td>CH_2OH</td>
<td>16.8</td>
<td>23</td>
<td><4^a</td>
<td><4.4^a</td>
</tr>
<tr>
<td>CH_3</td>
<td>1.5</td>
<td>1.9</td>
<td>2.4</td>
<td><1.5^a</td>
</tr>
<tr>
<td>NH_3</td>
<td>15</td>
<td>4.6</td>
<td><4.9^a</td>
<td><7.3^a</td>
</tr>
</tbody>
</table>

^a young stellar object
^b galactic center
^c upper limit
星間分子雲における二酸化炭素生成に関する実験的研究

子との反応で生成される HCO と、O 原子が反応すると、CO が生成すると考えられている (Ruffe and Herbst, 2001)。

\[H + CO \rightarrow HCO \quad (4) \]

\[HCO + O \rightarrow CO_2 + H \quad (5) \]

反応 (3) は、大気化学、燃焼化学の分野で理論的 (Yu et al., 2001; Senosaiin et al., 2003; Song et al., 2006)・実験的 (Frost et al., 1993; Laster et al., 2000) に研究されており、気相では安定な中間体の生成を経て、以下の経路で進行することが明らかにされている。

\[\text{CO} + \text{OH} \rightarrow \text{trans-HOCO} \quad (6) \]

\[\text{trans-HOCO} \rightarrow \text{cis-HOCO} \quad (7) \]

\[\text{cis-HOCO} \rightarrow \text{CO}_2 + \text{H} \quad (8) \]

各素過程のエネルギー障壁の高さはいまだ議論が続いているが、典型的なポテンシャルエネルギーダイアグラム (Yu et al., 2001; Fig.1) をみると、反応材料 (CO + OH) 系のエネルギーが、反応中間体や遷移状態のエネルギーと同等、もしくはそれ以上であるので、反応の進行に大きなエネルギーを必要としない。したがって反応 (3) は、励起分子が必要な反応 (1) や、大きな活性化エネルギーが必要な反応 (2) (Goumans et al., 2008) よりも起こりやすいと推測される。

これまでに、反応 (5) を除く 3 つの CO 生成反応 (1) ～ (3) が、星間雲を模した極低温・超高真空条件下で実験的に検証され、どの反応においても CO 生成が報告されている (たとえば、Watanabe and Kouchi, 2002)。それらの先行研究の大部分は CO を含む星間塵イオンミスタンプルへの UV や高エネルギーイオン照射によって、CO 生成反応を進行させていた。実際の星間雲環境でも、UV や宇宙線などのエネルギー源が普遍的に存在し (Prasad and Tarafdar, 1983; Tielens, 2006), かつ CO は星間塵アイスマントルの主要な構成分子である (Gibb et al., 2004; Table 1) ため、これら反応 (1) ～ (3) は星間雲でも起こりうるであろう。一方、反応 (5) はいま実証はされていないものの、エネルギー障壁を無視に進行することが、理論計算によって予想されている (Ruffe and Herbst, 2001)。

一方で、近年、光の届きにくい高密度分子雲内部でも CO の存在が確認されており、UV 照射などでよらない CO 生成経路の存在が示唆されている (Bergin et al., 2005; Knez et al., 2005; Whittet et al., 2007)。そうした環境で CO が UV や宇宙線により電子励起することは現実的である (たとえば、CO* (α') のエネルギー: ~580 kJ/mol, Bennett et al., 2009), 反応 (1) は期待できない。したがって、その他の CO 生成反応 (2), (3) が UV 等のエネルギー源なしに起こるかどうか興味が持たれる。

本稿で述べた、これまでに行われている星間雲を模した環境下、低温固体表面での CO 生成に関する実験的な研究を紹介する。その上で、本稿はさらにそれらの先行研究を、UV 等エネルギー源を用いたもの (2 章), およびそれらエネルギー源を用いないもの (3 章) に分けて紹介する。3 章では特に、最近筆者らが成果をあげた、エネルギー源を用いない CO 生成に関する実験結果を、その実験条件とともに詳しく紹介する。最後に、エネルギー源を必要としない CO 生成の天文学的意味を考察する (4 章)。

2. エネルギー照射による CO 生成

2.1 多成分水

1989年に天文観測で固体 CO 2 が発見される以前から、10 〜 20 K に冷却された H2O や CO などを含む多成分水へのエネルギー照射によって、固体 CO 2 が生成することはよく知られていた (たとえば、Hagen et
窒素化合物成分氷を光分解し1986々のUVはUVの成効率ル様に、高はは多成分水 kondiの生成物を同定した。Moore et al. (1983)は、1 MeVのプロトンをエネルギー源として同様の実験を20 Kの多成分氷で行い、UV照射実験と同様に、CO₂など種々の化合物の生成を確認した。Table 2に、模擬実験で用いられた多成分氷の組成の例と、その氷がエネルギー照射された後の生成物をまとめた。ちなみに、同じ組成を持つ多成分氷へのUV照射と高エネルギーイオン照射実験では、生成物の生成効率は両者のエネルギーレベルによって異なるものの、生成物の種類に大きな違いは見られない（Gerakines et al., 2000; Moore et al., 2001）。星間塵アイスマントルの組成を模した多成分氷へのエネルギー照射実験によって、COやH₂O, NH₃のような単純な無機分子から、H₂COやCH₄OH, さらには分子量数千の複雑有機物が生成される。そのように実験室内で生成した複雑有機物を酸加水分解すると、種々のアミノ酸が生成される場合もある（たとえば, Caro et al., 2002; Takano et al., 2004）。この事実は、星間分子雲における化学進化のみならず、炭素質限石中アミノ酸の起源、さらには地球上の生命の起源を解明する上で非常に重要であろう。一方で、この種の実験には大きな欠点がある。それは、氷が多成分であるために、ある生成物の生成プロセスを特定することが非常に困難だという点である。たとえば、Hagen et al. (1979) によるCO/CH₄/NH₃/H₂O 氷へのUV照射ではCO₂が生成されたが、その炭素は、COとCH₄のどちらか、もしくは両方が起源である可能性があるものの、答えははっきりしない。たとえCOとCH₄のどちらかの分子の炭素を同位体標識しても、明確な答えを得ることは難しいだろう。星間分子雲での化学進化過程については、応答速度を明らかにすることが重要であり、そのためには次に紹介する、単成分および二成分氷の実験が必要になる。

2.2 単成分・二成分氷

10 Kに冷却された固体COに波長～122 nmのUV（光子エネルギー～10 eV）を照射すると、CO₂に加えてC₄H₄, C₅H₆, C₆H₆が生成された（Gerakines et al., 1996）。これらの生成物の特徴から、反応(1)が進行したと予想できる。反応(1)によるCO₂生成は、10 K程度に冷却された固体COへの200 keVプロトン照射（Löffler et al., 2005）および5 keV電子線照射（Jamieson et al., 2006; Bennett et al., 2009）実験でも確認されている。また、UV照射による単位エネルギーあたりのCO₂生成効率は、プロトンや電子線照射のそれと比べて低かった（Gerakines et al.,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy source</td>
<td>UV</td>
<td>UV</td>
<td>UV</td>
<td>H⁺</td>
</tr>
<tr>
<td>Ice composition</td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
<td>CO₂</td>
</tr>
<tr>
<td></td>
<td>CH₄OH</td>
<td>CH₄OH</td>
<td>CO</td>
<td>NH₃</td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>NH₃</td>
<td>CH₄</td>
<td>CH₄</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>CO</td>
<td>NH₃</td>
<td>C₂H₆</td>
</tr>
<tr>
<td>New species formed</td>
<td>H₂CO</td>
<td>H₂CO</td>
<td>CO₂</td>
<td>CO₂</td>
</tr>
<tr>
<td></td>
<td>CH₄</td>
<td>CH₄</td>
<td>H₂CO</td>
<td>C₂H₆</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>CO₂</td>
<td>O₃</td>
<td>CO</td>
</tr>
<tr>
<td></td>
<td>HCO</td>
<td>HCO</td>
<td>NO</td>
<td>C₂H₆</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO₂</td>
<td></td>
</tr>
</tbody>
</table>
星間分子雲における二酸化炭素生成に関する実験的研究

1996; Loeffler et al., 2005)。Palumbo et al. (1998) は CO/窒素分子 (N₂) 混合氷への keV イオン照射を行い、生成される CO₂の赤外吸収スペクトル形状を分析した。CO/N₂氷は二成分であるが、CO生成に N₂は関与しないので、CO 単成分氷と同様に反応 (1) によって CO₂が生成される。この実験での発見は、単成分 CO 氷と CO/N₂氷では、UV 照射で生成した CO₂のピーク形状がそれぞれ異なったことである。この結果、実験的で得られた CO₂のピーク形状と比較し、アイスマントール CO₂の存在状態が議論されている (Palumbo et al., 1998)。

反応 (2) に関して、Fournier et al. (1979) は一酸化窒素 (N₂O)/CO/アルゴン (Ar) 混合氷 (7 K) への UV 照射実験を行った。Ar は反応に関与しないので、ここでの混合氷を二成分氷として扱う。この N₂O/CO/Ar + UV 実験で、UV 照射後に温度を上げると CO₂が生成したと報告している。後年 Grim d'Hendecourt (1986) が、N₂O ではなく O₂を用い、Fournier et al. (1979) と類似の実験を行ったところ、UV 照射直後に反応に CO₂が生成することが確認された。しかし、Fournier et al. (1979) による結果は異なり、UV 照射後に反応に基板温度を上げても、さらなる CO₂が生成は確認されなかった。この結果は、混合氷中に存在する O 原子と CO が、基板温度を上げても反応しなかったためである。したがって、反応 (2) が起こるためには UV 等のエネルギー源が必要であり、反応 (2) にはかなり大きなエネルギー障壁が存在すると考えられた (Grim d'Hendecourt, 1986)。両者の結果が異なる原因についてははっきりとした結論でしているが、CO₂の検出方法の違いや、O 原子を供する分子 (N₂O vs. O₂) が異なることなどが関与すると予想される。

二成分氷へのエネルギー照射実験は、CO/H₂O 氷でも行われている。Allamandola et al. (1988) と Palumbo and Strazzulla (1993) は CO/H₂O 氷 (10 K) にそれぞれ UV, 3 keV He イオン照射を行い、反応生成物に CO₂を確認した。しかし、両研究では反応素過程は注目されていなかった。

Watanabe and Kouchi (2002) は CO/H₂O 氷への UV (∼126 nm) 照射実験をあらためて行い、初めて CO₂生成反応の特性とその定量化的研究を行った。この実験では反応 (1) ~ (3) のすべて起こりうる。しかし、前述の通り反応 (1) は UV 照射では効率的ではなく (Gerakines et al., 1996; Loeffler et al., 2005), さらに H₂O の光分解 (126 nm) では H + OH が主要な分解生成物であるため (Dutuit et al., 1985), OH が関与する反応 (3) によって CO₂が生成したと結論された (Watanabe and Kouchi, 2002)。

H₂O の光分解で生成する OH が持つエネルギーを正確に測定することは容易でない。しかし、波長126 nm の UV の光子エネルギーは ~9.8 eV, H₂O の O-H の結合エネルギーは ~5.2 eV であるので、生成した OH は、おおよそ (9.8 ~ 5.2) / 18 = ~0.3 eV (~25 kJ mol⁻¹) 程度の余剰エネルギーを持つと計算できる (Watanabe and Kouchi, 2008)。実験的には、波長 157 nm の UV でアメルガス H₂O 氷を分解したときに生成する OH の並進エネルギーが見積もられている (~22 kJ mol⁻¹; Hama et al., 2009)。このエネルギーは反応 (3) の進行に十分であろう。実際の星間分子雲では、UV や宇宙線などのエネルギー源が普遍的に存在し (Prasad and Tarafdar, 1983; Tiehens, 2006), かつ CO と H₂O は星間雲アイスマントールの主要な構成分子であることから (Gibb et al., 2004; Table 1), 反応 (3) による CO₂生成は非常に有利であると考えられている (Watanabe and Kouchi, 2002)。また、CO/H₂O 氷 (12~16 K) への高エネルギーイオン照射による固体内 CO₂生成も定量化的に議論されており、UV 照射同様に、星間雲で起こりうる反応だと結論されている (Ioppolo et al., 2009)。

これまでに紹介した単成分・二成分氷へのエネルギー照射による CO₂生成実験では、CO が炭素源として用いられている。一方で、CO 以外の炭素を含む分子単体、およびその H₂O との混合氷へのエネルギー照射による CO₂生成生成実験も行われている。代替の炭素源として、CH₃OH (Allamandola et al., 1988; Palumbo et al., 1998; Ioppolo et al., 2009), CH₂(Allamandola et al., 1998; Ioppolo et al., 2009), Hydrogenated carbon grains (Mennella et al., 2004, 2006) を用いて実験が行われ、いずれにおいても CO₂生成が確認されている。これらの結果は、CO₂生成反応過程で容易に生成される分子であることを示す重要なものである。一方で、CO を用いた場合と異なり、CO₂生成に至るまでの反応素過程ははっきりしないため、今後さらに詳細な研究が必要とされる。

3. エネルギー源を用いない CO₂生成

2章では、UV 等のエネルギー源を用いた CO₂生成
に関する多くの研究例を紹介した。一方、エネルギー源を用いないCO₂生成に関する研究は非常に少ない。反応（2）〜（4）のようなラジカルや原子が関与する反応では、それらの活性性が高い化学種の取り扱いが非常に困難であるという。実験上の難しさが一因であろう。そのような制約のもとでも2000年以降、エネルギー源を用いない反応（2）（CO₂+O₂）、反応（3）（CO₂+OH）に関する研究が行われているので、それぞれ3.1、3.2で紹介する。なお、反応（5）（HCO₂+O）に関しては、HCO₂を実験に用いることが現在のところ極めて困難であるため、これまでに検証された例はない。

3.1 CO₂+O

反応（2）に関して、Roser et al. (2001) はマイクロ波放電でO₂をプラズマ状態にしてO原子を作製し、CO₂とともに5Kに冷却された反応基板上に蒸着させた。しかし、反応基板温度を上げてもCO₂は生成されなかった。これは、反応（2）に必要な活性化エネルギー（〜20 kJ mol⁻¹、Goumans et al., 2008）を得るために、反応基板からCO₂とO原子が脱離してしまったためだと解釈された。ところが、同じCO₂/O₂混合気を作製し、その上にさらに〜100分子層（1分子層＝10⁻⁶cm³）のH₂Oを蒸着したのちに反応基板温度を上昇させると、CO₂が生成したと報告している。ただし、そのCO₂生成は昇温脱離法のみで確認しており、生成温度に関する情報を得ることができず、またS/N比も悪かった。実験的に求められた反応（2）の活性化エネルギーはおよそ2.4 kJ mol⁻¹であり、理論計算で得られた値（〜20 kJ mol⁻¹、Goumans et al., 2008）とは隔たりがある。最近、反応（2）が理論的に再検証され、20 K程度の星間塵表面上では、反応（2）は効率的に進まないことが示された（Goumans and Andersson, 2010）。実際、筆者らがRoser et al. (2001) と同じ実験を行っても、CO₂生成を確認することはできなかった（Oba et al., unpublished data）。一方で、CO₂とO原子が弱く結合した複合体と、H原子との反応によるCO₂生成経路が提案された（Goumans and Andersson, 2010）。

3.2 CO₂+OH

3.2.1 H₂Oプラズマ

CO₂/H₂O蒸気へのUV（〜126 nm）照射では、CO₂とOHの反応によってCO₂が生成された（Watanabe and Kouchi, 2002）。H₂Oの光分解で生成されるOHが大きな余剰エネルギーを持つことは前提した。これに対し、余剰エネルギーを持つとんど持たない低温のOHを実験的に生成することは容易でなく、これまでUVなどのエネルギー源なしに、反応（3）を検証することができなかった。

我々は最近、H₂Oをマイクロ波放電によってプラズマ状態（本稿では、H₂Oブリズマと呼ぶことにする）にしてOHを生成し、それを10 Kに冷却して、極低温固体表面で反応材料として用いることに成功した（Oba et al., 2010a, 2010b, 2011）。Fig. 2および3にそれぞれ、実験装置の概要とCO₂+OH同時蒸着に関する説明を示す。

実験装置は複数のターボ分子ポンプで排気され、その到達真空度は10⁻⁶Torr程度である。OHはガラス管を出た後、同軸上に設置されたテフロンチューブ、およびアルミニウム（Al）パイプを通ってAl基板（10 or 20 K）上に蒸着される。Alパイプは100 Kに冷却されており、通過するOHはパイプ内壁との衝突により十分に冷却される。本実験では、実験装置の制約により、OHのエネルギー状態を直接測定することはできない。生成直後のOHは、振動・電子勧起しているかもしれないが、100 Kに冷却されたAlパイプ内壁との多数回衝突によって、Al基板到達前に、振動基底状態に落ちるはずである。この場合、OHは電子勧起していないことになる。これは、振動勧起しているOHが、気相で常温のCO₂分子と衝突して、サブミリ秒オーダーで基底状態に落ちるという実験結果（Kohno et al., 2011）からも、容易に想像できる。

我々は、H₂Oガスをプラズマ状態にしてH原子を作製し、100 Kに冷却されたAlパイプを通過させると、そのH原子はパイプ温度まで十分に冷却されていたことを確かめている（Nagaoka et al., 2007）。

基板上の反応生成物はフリーエ変換型赤外（FTIR）分光計によってその場分析される。また、反応基板から脱離した分子は四重極型質量分析計（QMS）にて検出される。実験装置・条件のさらなる詳細についてはWatanabe et al. (2006) や Nagaoka et al. (2007), Oba et al. (2010a) を参照されたい。

H₂Oプラズマ中には、OH以外にO原子・H原子・H₂Oなども含まれる（Timmermans et al., 1998）。本稿では、OHを含むこれら原子・分子・ラジカルを総称して、H₂Oフラグメントと呼ぶ。H₂Oフラグメントのみを10 Kに冷却された基板上に蒸着させると、H₂OフラグメントとOHの反応および形成が検出される（Fig. 4a）。ま
Fig. 2 Schematic illustration of the experimental apparatus ASURA used in this study.

Fig. 3 Schematic illustration of CO-H₂O fragment codeposition experiments on the cold substrate. H₂O fragments are cooled to 100 K after many collisions with the inner wall of the Al pipe (100 K).
た。H₂とO₂の生成は、QMSでのm/z=2（H₂）と32（O₂）の増加で確認された。H₂Oフラグメントのみを導入したプランク実験でのさまざまな化学反応は、Oba et al. (2011)で議論されている。

3.2.2 H₂Oフラグメント+CO Fig. 4bには、H₂OフラグメントとCOを基板（10 K）に同時蒸着させたときのIRスペクトルを示す。プランク実験（Fig. 4a）と比較すると、CO₂由来のピークの強度が明らかに強い。これは、H₂OフラグメントとCOとの反応で、CO₂が生成したことを示す。H₂Oフラグメントの成分を考慮すると、本実験条件では、COとO原子の反応（反応（2））、COとOHの反応（反応（3））、そしてもしH原子とCOの反応（反応（4））によってHCOが生成されれば、反応（5）によるCO₂生成も起こりうる。そこで、O₂プラズマ中O原子を100 Kに冷却し、COを基板上（10 K）に同時蒸着させて、反応（2）を検証した。しかし、同条件下でCO₂は生成しなかったため、反応（2）は除外できる。また、H₂Oフラグメント中のH原子の反応性を評価するために、H₂OフラグメントとO₂を10 Kに冷却された基板上に同時蒸着させた。すると、生成したH₂O₂は、H₂O量は、プランク実験でのそれらとほぼ同じであった。これは、一連のO₂の水素化反応

\[O_2 + H \rightarrow HO_2 (9) \]

\[HO_2 + H \rightarrow H_2O (10) \]

\[H_2O_2 + H \rightarrow H_2O + OH (11) \]

がO₂-H₂Oフラグメント同時蒸着実験で起こっていないことを示す。ここで、反応（4）が反応（9）に比べて非常に遅い（Watanabe and Kouchi, 2008）ことを考慮すると、COとH₂Oフラグメントを同時に蒸着させても、反応CO+H→HCOも反応（9）同様に起こらない予想できる。実際に生成物のIRスペクトルにHCO、H₂CO、そしてCH₃OHというCOの水素化反応に由来する化合物（Watanabe and Kouchi, 2008）のビーグは見つけていない（Fig. 4b）。したがって反応（5）も除くされ、CO-H₂Oフラグメント同時蒸着実験によるCO₂生成は、反応（3）によって起こったと結論された。筆者らが初めて実験的に証明した。この、エネルギー源を用いない固体表面反応（3）によるCO₂生成は、最新の理論計算研究でも、高密度星間分子雲内で非常に有効だと指摘されている（Garrod and Pauly, 2011）。

生成物のIRスペクトルにはCO₂に加え、1745, 1774, そして1812 cm⁻¹にプランク実験では見られなかった、炭酸（H₂CO₃）、cis-HOOCOラジカル、trans-HOOCOラジカルに由来するピークが検出された。
星間分子雲における二酸化炭素生成に関する実験的研究

（Fig. 4c）（Oba et al., 2010a,b）反応（3）の中間体である両HOCOラジカルの検出は，CO₂が極低温固体表面上でも反応（6）～（8）を経由して生成したことを強く支持する。H₂CO₂生成に関する詳細は，Oba et al.（2010b）を参照された。さらに，低温のOHとCOとの反応が，10Kという極低温でも進行したという結果は，反応（6）～（8）のエネルギー障壁は極めて小さい（むしろは，ない）ことを示唆する。また，H₂Oの光分解で生成した余剰エネルギーを持ったOHとCOの反応では，CO₂生成量に温度依存性は見られない（Watanabe et al., 2007），本実験条件では，10Kと20KでCO₂生成量が大きく異なった（Oba et al., 2010a）。H₂O/CO氷へのUV照射実験（Watanabe and Kouchi, 2002）では，光分解で生成したOHは振動回転励起されておいて表面温度の熱エネルギーに比べてはるかに大きいエネルギーを持つ，そのエネルギーを利用して，表面温度にかかわらず反応が速やかに進む。一方，エネルギー源を用いないOba et al.（2010a）による実験では，OHが充分に冷めているため，表面温度がOHの表面拡散距離に影響し，反応の有無に大きく関与すると考えられる（Oba et al., 2010a）。

筆者らがH₂Oプラズマを利用して反応（3）を検証した後に，ヨーロッパの2つの研究グループが，筆者らとは異なる方法で反応（3）を実験的に検証している。Ioppolo et al.（2011）は，CO₂/O₂水を低温（15or20K）基板上に作成し，そこへH原子を照射して，CO₂生成が起こるか検証した。OHは反応（11）などで生成され，その後，近接するCOと反応してCO₂を生成する，と提案している。Noble et al.（2011）は，Ioppolo et al.（2011）の実験に加え，CO₂/O₂水+H原子という実験も行っている。O₂とH原子と反応すると，O₂とOHが生成する（Tielens and Hogerheijde, 1982; Mokrane et al., 2009; Romanzin et al., 2011）。

\[\text{O}_2 + \text{H} \rightarrow \text{O}_2 + \text{OH} \] (12)

反応（12）で生成したOHが，近接するCOと反応するというメカニズムは，CO₂/O₂水実験と同じである。

しかし，ここで注意したいのは，反応（11）（12）ともに150～300kJ/mol程度の発熱をともなう点である（Keyser, 1979; Koussa et al., 2006）。したがって，各反応で生成されるOHは，その生成直後，非常に大きな余剰エネルギーを持つはずである。したがって，現段階では，彼らの結果を筆者らの実験結果（Oba et al. 2010a）と同様の，“低温OHとCOの反応によるCO₂生成実験”として扱うことはできない。

4. 低温OHとCOの反応によるCO₂生成の天文学的意義

Infrared Space Observatory（ISO）による赤外線天文観測によって，星間分子雲における大部分の固体CO₂は，H₂Oに豊富な環境に存在することが明らかにされた（Gerakines et al., 1999）。さらに，H₂OとCOとともに気相ではなく星間塵表面で生成したと見られるため（Hasegawa et al., 1992），両分子は同時期に生成すると考えられている（Whittet et al., 2007）。

筆者らの研究で，CO₂が低温のOHとCOとの反応（3）で生成することを示した（Oba et al., 2010a, 3.2.2参照）。同様にH₂Oも，OHとH原子やH₂の反応で生成すると考えられている（Tielens and Hogerheijde, 1982）。

\[\text{OH} + \text{H} \rightarrow \text{H}_2 \text{O} \] (13)

\[\text{OH} + \text{H} \rightarrow \text{H}_2 \text{O} + \text{H} \] (14)

高密度星間分子雲内ではH₂＞Hであるため，エネルギー障壁がない反応（13）よりも，およそ17.5kJ/mol（Atkinson et al., 2004）のエネルギー障壁がある反応（14）のほうが有利だという報告がある（Cuppen and Herbst, 2007）。しかし，10Kの高密度星間分子雲では，上記のエネルギー障壁を越える熱的反応は起こらない。すなわち，反応（14）は量子的なトンネル反応によって達成されると考えられる。現在我々のグループでは反応（14）を実験的に検証しており，この仮説を支持する結果が得られている（Oba et al., unpublished data）。一方，前述の通り，反応（3）のエネルギー障壁は非常に小さい（むしろは，ない）ため，単純にエネルギー障壁の大きさのみを比較すれば，反応（3）は反応（14）よりも起こりやすいといえる。実際にはH₂はCOよりも圧倒的に多いので，H₂O生成が卓越する（Ruffle and Herbst, 2001）が，CO₂生成もH₂O生成に比べて頻度は低いが起こると考えられ，結果としてH₂Oに富む環境でのCO₂生成が可能である。また，CO/H₂O水へのUVやイオンなどのエネルギー照射（たとえば，Watanabe and Kouchi, 2002）でも，H₂Oに富む環境でCO₂生成が可能である。しかし，そのためには
H₂OがCO₂より先に星間塵上で存在している必要があり，かつ，高密度星間分子雲内部では寄与が少ないUV等のエネルギー源を必要とする。一方，低温のOHとCOによる反応は，H₂OやUV等エネルギー源を必要としないCO₂生成経路である。

では，低温のOHとCOの反応によるCO₂生成が，実際の高密度星間分子雲でどれほどの寄与があるのだろうか？Fig.5に示すように，反応(3)によるCO₂のCO₂への交換効率(R_m)はOH/CO比に比例して増加する傾向を示し，反応基板上へ蒸着されたOHとCOの比(OH/CO)が4.2で約10%となった（Oba et al., 2010a）。しかし，高密度星間分子雲で星間塵表面でのOH/CO比がわかるCO₂とOHによってCO₂生成反応の寄与をおおむかに推測できる。固体CO₂量は，さまざまな星間雲で観測されている（たとえば，Gibb et al., 2004）。一方，OHは固相で見つかっておらず，その量は理論計算によって推定されているのみである（たとえば，Cuppen and Herbst, 2007）したがって，現時点では星間塵表面における正確なOH/CO比ははっきりしない。そこで，反応(13)，(14)のように，1分子のH₂Oが一つのOHから生成すると仮定する。さらに，COは気相からのみ供給されるとする。これらの場合，星間塵アイスマントル中にはH₂OとCOの量比は，実験でのOH/CO比と対比可能だと考えられる。星間塵アイスマントル中の固体CO₂量は，一般的にH₂O量に対しておよそ25%もしくはそれ以下であるので（Gibb et al., 2004），OH/CO>4となる。対応するR_mは，Fig.5に示すOH/CO比との正の相関から10%以上だ

と推測される。これは，大胆な仮定に基づいて導かれ
た値であるため，実際の環境への適用には注意が必要
dが，それでも高密度星間分子雲での低温OHとCO
の反応が，CO₂生成に重要であると結論するには十分
な値である。

最後に，星間塵表面で熟的に，つまり，UV等エネルギ
ール源を必要とせず起こりうる，H・C・Oに関する
化学反応ネットワークをFig.6にまとめた。CO₂の
生成経路として，HOCOラジカルを中間体とする反
応(3)が実験的に確かめられた（Oba et al.,
2010a）。反応(2)（CO+O）によるCO₂生成は信頼
できる結果がいまだ得られておらず，さらに研究が必要
である。また，HOCOラジカルとH原子の反応で
もCO₂が生成されると考えられているが（Goumans
et al., 2008），実験的にはまだ確かめられていない。
CO₂はCO₂を生成するだけでなく，H原子との反応
でH₂COやCH₂OHを生成する（Hidaka et al., 2004;
Watanabe et al., 2006）。

CO → HOCO → H₂CO → CH₂O → CH₃OH (15)

固体表面におけるCOおよびH₂COへのH原子付加
反応は，20 kJ mol⁻¹程度の活性化エネルギーを必要
とする発熱反応であるが（Woon, 2002），10 Kとい
う極低温でもUV等エネルギー源なしに進行する。
これは，量子的なトンネル効果によって説明可能であ
る（Watanabe and Kouchi, 2008）。

OHはCOとの反応でCO₂を生成するだけでなく，
そのほかにもさまざまな反応に関与しており，H₂O
などの重要な分子の生成に用いられる重要な化合物で
ある。OHの反応によるH₂O生成は，Oba et al.
（2011）によって詳しく議論されているので，そちらを参照したい。

最近の研究で，星間塵アイスマントルの主要な成分
の一つであるNH₃（Gibb et al., 2004; Table 1）がN
原子とH原子との反応で生成される（Hidaka et al.,
2011），Nを含めた化学反応ネットワークの発展が期
待されている。N原子の化学反応に関する研究がよ
り進めば，生成される分子の種類は格段に増加する。
さらに，Fig.6のような熱的な化学反応ネットワークに，
UVや宇宙線照射によるエネルギー的な反応が加わ
れば，より複雑で大きな分子（たとえば，アミノ酸や核
酸塩基などの生体関連分子）の生成が十分に期待でき
るだろう。
Fig. 6 Possible network for chemical reactions, related to C, H, and O atoms, which may thermally occur on interstellar icy grain mantles. Solid arrows indicate reactions which have been experimentally demonstrated to occur, and dashed arrows indicate reactions which are theoretically expected or under debate to occur.

謝辞
谷篠史博士（大阪大学）および一名の匿名査読者から、本稿に対して有益なコメントをいただきました。本研究を行うにあたり、日本学術振興会からの科学研究費補助金の一部を使用しました。

引用文献

Knez, C., Boogert, A. C. A., Pontoppidan, K. M., Kessler-Silacci, J., van Dishoeck, E. F., Evans, I. N. J.,

Koussa, H., Bahri, M., Jaidane, N. and Ben Lakhdar, Z. (2006) Kinetic study of the reaction \(\text{H}_2\text{O} + \text{H} \rightarrow \text{H}_2\text{O} + \text{OH} \) by \textit{ab initio} and density functional theory calculations. Journal of Molecular Structure: THEOCHEM, 770, 149-156.

Légaré, A., Klein, J., de Cheveigné, S., Guinet, C., Defourneau, D. and Belin, M. (1979) The 3.1 \(\mu \)m absorption in molecular clouds is probably due to amorphous \(\text{H}_2\text{O} \) ice. Astronomy and Astrophysics, 79, 256-259.

NII-Electronic Library Service

