A 19-year follow-up study of a Japanese representative population, NIPPON DATA80, revealed that risk factors for stroke, coronary heart disease (CHD), and all cardiovascular disease (CVD) were not different from those of Western societies although absolute risks for stroke and CHD in Japan were different mainly due to differences in incidence and mortality from stroke and CHD. Japanese individuals had the highest rate of stroke mortality in the world in 1965 but the lowest CHD incidence and mortality among industrialized countries.

For assessing an individual’s risk of stroke, CHD, and all CVD death risk in the general Japanese population. These charts should be used as a health-education tool for lifestyle modification targeting individuals with CVD risk factors.

Key Words: Blood pressure; Cholesterol; Coronary heart disease; Glucose; Smoking; Stroke

Risk Assessment Chart for Death From Cardiovascular Disease Based on a 19-Year Follow-up Study of a Japanese Representative Population

NIPPON DATA80

**NIPPON DATA80 Research Group*

Background Based on the NIPPON DATA80, risk charts for the probability of death from coronary heart disease (CHD), stroke, and all cardiovascular disease (CVD) were constructed by sex and 10-year age groups.

Methods and Results The 9,638 participants were followed-up for 19 years from 1980, excluding 28 individuals without the necessary baseline data and 257 participants with past history of stroke or CHD. Final analysis was performed on 9,353 participants (4,098 men, mean age 50.3 years; 5,255 women, mean age 50.8) using a Cox proportional hazards model. Death probabilities over a 10-year period from CHD, stroke, and all CVD were calculated and displayed as color coding on each chart by combining 10-year age, systolic blood pressure, smoking, and serum total cholesterol and glucose levels. Six different colors corresponding to probabilities of death were displayed on each chart.

Conclusions The original charts based on the findings from NIPPON DATA80 are suitable for assessing CHD, stroke, and all CVD death risk in the general Japanese population. These charts should be used as a health-education tool for lifestyle modification targeting individuals with CVD risk factors.

Key Words: Blood pressure; Cholesterol; Coronary heart disease; Glucose; Smoking; Stroke

(AReceived June 6, 2006; revised manuscript received July 13, 2006; accepted July 21, 2006)

*Members of the research group are listed in the Appendix 1.

Mailing address: Hirotsugu Ueshima, MD, Department of Health Science, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu 520-2192, Japan. E-mail: hueshima@belle.shiga-med.ac.jp

Circulation Journal Vol.70, October 2006
the national government of Japan. Approval for this study regarding ethics issues was obtained from the Institutional Review Board of the Shiga University of Medical Science (No. 12–18, 2000).

Biochemical and Baseline Examinations

Baseline examinations were conducted by public health centers. Baseline systolic and diastolic blood pressures (SBP, DBP) were measured by trained operators using a standard mercury sphygmomanometer on the right arm of seated subjects after at least 5 min of rest.

Subjects were asked to note whether they were current smokers, had quit smoking, or had never smoked. Smokers were asked to note the number of cigarettes smoked each day. Non-fasting blood samples were drawn and centrifuged within 60 min of collection, and then stored at –70°C until analyses. Total cholesterol was analyzed in a sequential auto-analyzer (SMA12/60; Technicon, Tarrytown, NY, USA) at a single laboratory (Osaka Medical Center for Health Science and Promotion), which is a member of the Cholesterol Reference Method Laboratory Network (CRMLN), and the precision and accuracy of the measurements of serum cholesterol were certified in the Lipid Standardization Program administered by the Centers for Disease Control and Prevention, Atlanta. Serum concentrations of glucose were measured by the cupric-neocuproine method. Original glucose values obtained by the cupric-neocuproine method were converted to those of the glucose-neocuproine method. Disease Control and Prevention, Atlanta. Serum concentrations of cholesterol were certified in the Lipid Standardization Program administered by the Centers for Disease Control and Prevention, Atlanta. Serum concentrations of glucose and cholesterol were measured using an auto-analyzer (SMA12/60; Technicon, Tarrytown, NY, USA) at a single laboratory (Osaka Medical Center for Health Science and Promotion), which is a member of the Cholesterol Reference Method Laboratory Network (CRMLN) and the precision and accuracy of the measurements of serum cholesterol were certified in the Lipid Standardization Program administered by the Centers for Disease Control and Prevention, Atlanta. Serum concentrations of glucose were measured by the cupric-neocuproine method. Original glucose values obtained by the cupric-neocuproine method were converted to those of the glucose-neocuproine method, which is currently the standard, by use of an equation reported by the same laboratory. Diabetes mellitus (DM) was defined as a serum glucose concentration ≥200 mg/dl.

Statistical Analysis

Complete details of the statistical methods are reported elsewhere The outcome event used in the present study was cause-specific death from stroke, CHD, and all CVD. A Cox proportional hazards model was used to determine the probability of death of those with risk factor x at baseline. Survival probability S(t|x) at the time t for risk factor x in the Cox regression analysis is given as the following:

\[S(t|x) = S_0(t) \exp \left(\beta (x - x) \right) \]

where \(x \) is population mean of risk factor x, and \(S_0(t) \) is survival probability for those with risk factor x. The 10-year probability of death for risk factor x was calculated by the following equation:

\[1 - S(10|x) \]

We constructed risk assessment charts for 10-year probability of death due to CHD, stroke, and all CVD in both men and women using traditional risk factors (ie, SBP, smoking habit, serum total cholesterol and serum glucose). SBP was classified into 5 categories: (1) 100–119 mmHg, (2) 120–139 mmHg, (3) 140–159 mmHg, (4) 160–179 mmHg and (5) 180–199 mmHg. Smoking was divided into 2 categories: non-current smoker and current smoker. Serum total cholesterol was classified into 6 categories: (1) 160–179 mg/dl, (2) 180–199 mg/dl, (3) 200–219 mg/dl, (4) 220–239 mg/dl, (5) 240–259 mg/dl, and (6) ≥260 mg/dl. Casual serum glucose level was divided into 2 categories: <200 mg/dl and ≥200 mg/dl. These cutoff points were based on either practical considerations or guideline recommendations from the Hypertension Treatment Guidelines 2004 in Japan and the Treatment of Atherosclerosis in Japan.10 Ten-year death probabilities from stroke, CHD, and all CVD were calculated and displayed as color coding on each chart, combining 10-year age, systolic blood pressure, smoking, and serum total cholesterol and glucose levels. Six different colors were displayed on each chart corresponding to the following probabilities of death: <0.5%, 0.5–1%, 1–2%, 2–5%, 5–10% and ≥10% for CHD and stroke, and <1.0%, 1–3%, 3–7%, 7–15%, 15–30% and ≥30% for all CVD. SAS version 8.02 for Windows (SAS Institute, Cary, NC) was used for estimating a regression coefficient of, and the survival probability \(S_0(t|x) \) for those with the population mean \(x \) of a risk factor.

Results

During the 19-year follow-up from 1980, the number of deaths from stroke and CHD was 312 and 132, respectively (Table 1), and death rates were 1.93 and 0.81 per 1,000 person-years. Average age for men and women at baseline was 50.3 and 50.8 years, respectively. Although SBP was higher in men than in women, serum total cholesterol was higher in women than in men (190.8 mg/dl vs 186.1 mg/dl). Prevalence of casual glucose level ≥200 mg/dl was slightly higher in men than in women (1.61% vs 1.16%). Smoking rate in men was far greater than in women, reflecting the relatively high smoking rate of Japanese men in 1980.
Death rates for stroke and CHD by age group at entry in 1980 are shown in Table 2. Stroke death rate was around 3-fold higher than the CHD death rate among subjects aged 70 years and older. Stroke mortality for men increased with age; however, CHD mortality rate after the age of 70 years was similar for both sexes, although the mortality rate was much higher in men than in women under the age of 70.

A Cox proportional hazards model was used to determine 10-year probability of death due to CHD, stroke, and all CVD, taking into account baseline risk factors such as age, SBP, serum total cholesterol, smoking, and serum glucose. By using the coefficients from the Cox model and the 10-year death probability for mean levels of risk factors (age, smoking, total cholesterol and casual glucose), risk assessment charts were constructed for both sexes for the probability of death within 10 years from CHD, stroke, or all CVD. The 10-year probability of death was determined for various combinations of baseline risk-factor levels. Figs 1–6 show the results, with a 6-color gradient from the highest (red) to the lowest (light blue) probability of death within 10 years.
what different from the CHD death probability chart for both men and women. For CHD death the color (probability) gradient continued from the lower-left to the upper-right, whereas the color gradient for stroke death was not as remarkable as it was for CHD. For all CVD, the chart was a cross between the charts for death risk due to CHD and to stroke. Again, the color gradient tended to proceed from the lower-left to the upper-right, although this gradient was weaker in all CVD than in CHD.

Discussion

Based on a 19-year follow-up study in a Japanese representative population, we constructed 10-year death probability charts for CHD, stroke, and all CVD, with a 6-color gradient showing 10-year probability of death. A major strength of these charts is that the risk of death was estimated using traditional risk factors based on a cohort study of a representative Japanese population. Our original charts created in this study may be more suitable in terms of generalization for Japanese people than others based on the modified Framingham CHD risk core, or a local cohort study, although these charts also contained a high-density lipoprotein cholesterol variable.

The risk assessment charts presented here show 10-year death probabilities, but not incidence probability. Therefore, the absolute death rate in these charts is lower than that of incidence. However, using a 6-color gradient from the highest (red) to the lowest (light blue) probability of death allows individuals to see their own position on the chart.
and easily understand their own risk level.

We estimated risk using an age range of 40–79 years and found that men and women in their 40s and 50s had a lower probability of death even if they had traditional risk factors (ie, smoking and hypertension). In contrast, men and women in their 70s had the highest probability of death (yellow, orange and red colors). If we had performed separate risk analysis on each 10-year age range, we could have identified the risk within any given 10-year age range. However, in this study, we followed a similar method of risk assessment as the Framingham CHD risk assessment score4 and others.12 It should be understood that the charts presented here do not alleviate the need to control risk factors in younger individuals, despite their lower probability of death. For example, hypertension should be controlled in everyone by lifestyle modification, and by drug treatment, if necessary. If we ignore hypertension in younger individuals because of their lower risk of mortality from CHD and stroke, such individuals will have increased risk of mortality as they age. This principle also applies to modification of all traditional risk factors, such as high serum cholesterol, smoking, and DM.

Fig 5. Risk assessment chart for 10-year probability of death due to all cardiovascular disease in men, NIPPON DATA80. Ten-year probability of death was calculated based on individual risk assessment using sex, age, systolic blood pressure (BP), serum total cholesterol, serum glucose and smoking habit. Someone with any of the cardiovascular disease (CVD) risk factors, despite belonging to the lowest risk group (light blue) should undergo risk factor modification by non-pharmacological and/or pharmacological treatment.

Fig 6. Risk assessment chart for 10-year probability of death due to all cardiovascular disease in women, NIPPON DATA80. Ten-year probability of death was calculated based on individual risk assessment using sex, age, systolic blood pressure (BP), serum total cholesterol, serum glucose and smoking habit. Someone with any of the cardiovascular disease (CVD) risk factors, despite belonging to the lowest risk group (light blue) should undergo risk factor modification by non-pharmacological and/or pharmacological treatment.
education to individuals using the charts rather than simply informing them of their relative or absolute risk of dying from a particular disease.

The CHD risk assessment chart resulting from this study was clearly graded but the stroke chart was not, mainly because serum total cholesterol was not a risk factor for stroke death, which has been well documented in several cohort studies.26,29,33–35 As an epidemiological finding, stroke incidence and mortality in the general Japanese population varied directly with blood pressure but inversely with total serum cholesterol levels.6,8,10,14,20,21,24,28,29,33–35

In conclusion, our risk assessment charts by sex for CHD, stroke, and all CVD can be used as a health-education tool to show risk of death in Japanese individuals. We hope that these charts are used not only in the clinic but also in the community and industrial health sectors.

Acknowledgments

This study was supported by a Grant-in-Aid from the Ministry of Health and Welfare under the auspices of Japanese Association for Cerebrocardiovascular Disease Control, a Research Grant for Cardiovascular Diseases (7A-2) from the Ministry of Health, Labour and Welfare, and a Research Grant for Cardiovascular Disease Control, a Research Grant for Cardiovascular Diseases among Japanese men. We also received a Health and Labour Sciences Research Grant, Japan (Comprehensive Research on Aging and Health: H11-Chouju-046, H14-Chouju-003, H17-Chouju-012).

References

Appendix 1

Members of NIPPON DATA80 Research Group

Writing Group Members

H Ueshima (Department of Health Science, Shiga University of Medical Science; F Kasagi (Department of Epidemiology, Radiation Effects Research Foundation); K Kodama, (Department of Epidemiology, Radiation Effects Research Foundation); T Okamura (Department of Health Science, Shiga University of Medical Science); T Hayakawa (Department of Public Health, School of Medicine, Shimane University); A Okayama (Department of Preventive Cardiology, National Cardiovascular Center).

NIPPON DATA80: National Integrated Project for Prospective Observation of Non-Communicable Disease And its Trends in the Aged

Chairman: Hirotsugu Ueshima (Department of Health Science, Shiga University of Medical Science, Otsu, Shiga).

Consultants: Osamu Iimura (Hokkaido JR Sapporo Hospital, Sapporo, Hokkaido); Teruo Omae (Health C&C Center Hisayama, Kasuya, Fukuoka); Kazuo Ueda (Murakami Memorial Hospital, Nakatsu, Oita); Hiroshi Yanagawa (Saitama Prefectural University, Kohshigaya, Saitama); Hiroshi Horibe (Aichi Medical University, Nagakute, Aichi).

Research Members: Akira Okayama (Department of Preventive Cardiology, National Cardiovascular Center, Suita, Osaka); Kazunori Kodama, Fumiyoshi Kasagi (Radiation Effects Research Foundation, Hiroshima); Tomonori Okamura, Yoshikuni Kita (Department of Health Science, Shiga University of Medical Science, Otsu, Shiga); Takehito Hayakawa, Shinichi Tanihara (Department of Public Health, School of Medicine, Shimane University, Izumo, Shimane); Shigeyuki Saito (Second Department of Internal Medicine School of Medicine, Sapporo Medical University, Sapporo, Hokkaido); Kiyomi Sakata (Department of Hygiene and Preventive Medicine, Iwate Medical University School of Medicine, Morioka, Iwate); Yosokazu Nakamura (Department of Health Science Division of Epidemiology and Community Health, Jichi Medical School, Minami Kawachi, Tochigi); Fumihiko Kusano (Hikone Public Health Center, Hikone, Shiga).

Research Associate Members: Toshihiro Takeuchi, Mitsuru Hasebe, Fumitsugu Kusano, Takahisa Kawamoto and members of 300 Public Health Centers in Japan, Masumi Minowa (Faculty of Humanities, Seitoku University, Matsudo, Chiba); Katsuhiko Kawaminami (Department of Public Health Policy, National Institute of Public Health, Wako, Saitama); Sohel R. Choudhury (National Heart Foundation Hospital & Research Institute, Dhaka, Bangladesh); Yutaka Kiyohara (Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka); Minoru Iida (Kansai University of Welfare Sciences, Kashiwara, Osaka); Tsutomu Hashimoto (Kinugasa General Hospital, Yokosuka, Kanagawa); Atsushi Terao (Health Promotion Division, Department of Public Health and Welfare, Shiga Prefecture, Otsu, Shiga); Koryo Sawai (The Japanese Association for Cerebro-cardiovascular Disease Control, Tokyo); Shigeo Shibata (Clinical Nutrition, Kagawa Nutrition University, Sakado, Saitama).