Apolipoprotein E Polymorphism Influences Lipid Phenotypes in Chinese Families With Familial Combined Hyperlipidemia

Wei-Dong Pei, MD; Yan-Hong Zhang, MS*; Yu-Hua Sun, MD; Yu-Chun Gu, MD**; Yan-Fen Wang, PhD*; Chao-Yang Zhang, MD; Jian Zhang, MD; Li-Sheng Liu, MD; Ru-Tai Hui, MD; Yu-Qing Liu, MD; Yue-Jin Yang, MD

Background Apolipoprotein E (apoE) polymorphism is associated with changes in the lipoprotein profile of individuals with familial combined hyperlipidemia (FCHL), but its effects on the lipoprotein profiles of members of Chinese families with FCHL remain uncertain.

Methods and Results 43 FCHL families (n=449) and 9 normolipidemic families (n=73) were recruited to assess the influence of apoE polymorphism on plasma lipids. The relative frequency of the Δ4 allele in affected and unaffected FCHL relatives, spouses and normolipidemic members was 13.8%, 5.3%, 9.1% and 6.8%, respectively, with a significantly higher frequency in affected FCHL relatives, compared with unaffected FCHL relatives or normolipidemic members (p=0.0002 or p=0.029). In FCHL relatives, the apoE4 subset (E4/4 and E4/3) exhibited significantly higher levels of apoB, total cholesterol and low-density lipoprotein-cholesterol (LDL-C) than did the apoE3 (E3/3) subset, especially in women (all p<0.05), and there was significant elevation of LDL-C concentrations in men only (p<0.05). In men, the apoE2 (E3/2) subset indicated a decreased level of apoB and increased apoA1 compared with those in the apoE3 subset (p<0.05).

Conclusions ApoE polymorphism appears to be associated with variance of the lipoprotein phenotype in Chinese families with FCHL. (Circ J 2006; 70: 1606–1610)

Key Words: ApoE; Familial combined hyperlipidemia; Genotypes

Lipoproteins play an important role in the development of atherosclerotic cardiovascular disease in humans and the genetic variation of apolipoprotein E (apoE) is a major determinant of inter-individual variation in susceptibility to dyslipoproteinemia or coronary artery disease. The gene for apoE is closely linked to the apoC1–C2 gene complex on chromosome 19q13.2. Three common polymorphisms designated as Δ2, Δ3, and Δ4 code for the 3 major apoE protein isoforms in humans. The apoE2 isoform differs from apoE3 by a cysteine for arginine substitution at amino acid residue 112. Of these variants, Δ3 allele is the most frequent in all populations. Many studies have shown that Δ2 allele is associated with low levels of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and apoB, whereas for Δ4 allele the opposite is observed. In general, the Δ2 allele cholesterol-lowering effect is 2–3-fold that of the Δ4 allele cholesterol-raising effect. The overall average excess for Δ2 allele lowers cholesterol levels by –14 mg/dl and the Δ4 allele raises them by 8 mg/dl. Moreover, LDL-C has been found to be lower in the apoE3/2 subset than in the apoE3/3 or -E4/3 subset with endogenous hypertriglyceridemia or familial hypercholesterolemia. These observations suggest that apoE isoforms specifically modulate the lipoprotein profile expression in different types of dyslipidemia. Familial combined hyperlipidemia (FCHL) is a genetic lipid disturbance associated with premature coronary heart disease, with a prevalence of 0.5–2.0% in general populations. In a preliminary study, we were able to demonstrate that in Chinese and German families the phenotype FCHL was linked to a locus on chromosome 1q21–23, which had been shown to be linked to the same phenotype in an isolated Finnish population. Recently, Pajukanta et al showed that FCHL was associated with the gene encoding upstream transcription factor 1, especially in males with high triglyceride concentration. Additionally, apoE polymorphism was not only associated with normolipidemic subjects but also with the lipid phenotypic expression in families with FCHL. Among affected relatives with FCHL families, individuals with apoE4/4 had higher LDL-C and lower triglyceride levels than those with apoE3/2. However, little is known about apoE polymorphism in families with FCHL in China, so this study was undertaken to estimate the specific impact of apoE polymorphism on lipid levels in Chinese families with FCHL.
Methods

Family Ascertainment and Study Subjects

Details on our family field working approach are described as follows. Briefly, their primary care physicians, who rely on information from index patients, are responsible for recruiting family members on the basis of family trees. All surveys were done in facilities at or close to the work sites of the participants. Information collected included demographic, sociocultural, and biochemical data, medical history, and physical examination. Environmental factors play an important role in the expression of the hyperlipidemia, so we asked all participants to report their weekly average intake of several food items during the preceding 3 months. Generally, the nutritional habits were roughly the same in northern China, compared with the dietary pattern in southern China. Additionally, all participants completed a health questionnaire and submitted a fasting blood sample, from which we measured lipid levels and extracted DNA for future genetic analysis. All the participants were informed as to the purpose of the studies and written consent was given by them. The protocol was approved by the Ethics Committee of Peking Union Medical College.

Families with FCHL met each of the following criteria: N18 1 (at least 2 consanguine relatives with a primary elevation of TC and/or triglyceride (TG) levels within the same family (Fredrickson classification IIa, IIb, or IV); (2) absence of secondary causes of hyperlipidemia (renal or hepatic insufficiency, hypothyroidism, and medication), absence of the apoE2/E2 genotype and tendon xanthomas.

Normolipemic families met the following criteria: any consanguine relative without primary elevation of TC and TG levels within the same family.

Thus, we collected 43 families with a total of 449 members from Fu Wai Heart Hospital and 3 collaborative medical centers in Shandong, Henan and Hebei Provinces in northern China. Of the 300 relatives, 138 individuals met the criteria of affected in terms of TC and/or TG levels in excess of the 95th percentile for age and gender on the base of Chinese populations. In addition, we recruited as controls other family members from the same area who did not have dyslipidemia.

Laboratory Analysis

Briefly, blood was centrifuged with EDTA to separate plasma and cells within 3 h of collection. Plasma lipids and glucose were measured centrally by automated techniques. We measured concentrations of TC, TG and high-density lipoprotein-cholesterol (HDL-C) by enzymatic techniques, apoA1 and apoB by immunoturbidimetry. LDL-C was estimated by amplification and HhaI digestion.21 Laboratory controls other family members from the same area who did not have dyslipidemia.

Statistical Analysis

Distributions of plasma lipid concentrations were tested for normality, and TG was log transformed to obtain normal distribution. All values are expressed as mean±standard deviation. Differences between men or women for the quantitative trait means were tested by Student's t-test. Comparison of means among 3 groups was calculated by 1-way ANOVA test. Allele frequencies were determined by the gene-counting method under the hypothesis of the Hardy–Weinberg equilibrium. To examine the association between the apoE genotypes and lipid traits, the individuals were divided into 3 groups: apoE2 group (E2/E2 and E3/E2 subjects), apoE3 group (E3/E3 subjects) and apoE4 group (E4/E4 and E4/E3 subjects). The individuals with the apoE4/2 genotype were not included in this analysis. We present the means of comparison of apoE genotypes with those for apoE3, representing the wild genotype. Frequency distributions of the phenotypes were analyzed by the goodness of fit test. All probability values were based on 2-sided tests of statistical significance. Significance was considered to be at the 5% level. All statistical analysis was performed using SPSS software (SPSS 8.0 Inc, Chicago, IL, USA).

Table 1 Baseline Characteristics of the Families With FCHL

<table>
<thead>
<tr>
<th>Family</th>
<th>TC (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>LDL-C (mg/dl)</th>
<th>HDL-C (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCHL relatives</td>
<td>196.67±57.51</td>
<td>179.49±178.98*</td>
<td>123.18±51.10</td>
<td>41.45±11.79*</td>
</tr>
<tr>
<td>FCHL spouses</td>
<td>194.90±46.75</td>
<td>130.31±109.17</td>
<td>124.09±41.53</td>
<td>47.07±13.47</td>
</tr>
</tbody>
</table>

FCHL, familial combined hyperlipidemia; BMI, body mass index; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; Apo, apolipoprotein.

Results

The demographic characteristics of the relatives and spouses in FCHL families are shown in Table 1. Our data show that the TG levels were higher in FCHL relatives compared with spouses (p<0.01). However, spouses had significantly higher values of HDL-C or apoA1 compared with FCHL relatives (p<0.01). Additionally, as a surrogate measure for small-dense LDL (sdLDL), the LDL-C/ApoB ratio was not significantly different between FCHL relatives and spouses (p>0.05), nor between affected FCHL relatives and unaffected FCHL relatives (p>0.05).

ApoE genotypes and allele frequencies in FCHL or normolipidemic families are shown in Table 2. The apoE2/2 genotype did not appear in either the FCHL or normolipidemic families. ApoE genotypes and apo allele frequencies in the unaffected FCHL relatives were roughly the same as normolipidemic families. However, the allele frequency in affected FCHL relatives was significant higher, compared with unaffected FCHL relatives or normolipidemic families (p=0.0002 or p=0.029). The frequency of the allele was similar among normolipidemic families, and unaffected or affected FCHL relatives (p>0.05). The frequency of the allele among FCHL relatives, spouses and normolipidemic family members was 84.8%, 84.9% and 87.7%, respectively. Thus, the allele was the most frequent in these families, but the lowest frequency was for the allele.

In order to analyze the association of apoE genotypes with lipid levels and other traits, subjects were grouped as apoE2, -E3 and -E4 subsets (Table 3). In FCHL relatives,
ApoE genotypes and allele frequencies in FCHL and NF

<table>
<thead>
<tr>
<th>Families (n)</th>
<th>apoE genotypes</th>
<th>Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E2/2 N (%)</td>
<td>E3/2 N (%)</td>
</tr>
<tr>
<td>FCHL (43)</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>All relatives</td>
<td>300</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Affected</td>
<td>138</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Unaffected</td>
<td>162</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Spouses</td>
<td>149</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>NF (9)</td>
<td>73</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

*p<0.01, ¶p<0.05 compared with apoE3 subset. ApoE2, E2/2 and E3/2 subjects; ApoE3, E3/3 subjects; ApoE4, E4/4 and E4/3 subjects.

Abbreviations see in Tables 1,2.

We also evaluated the effect of apoE polymorphism on phenotypes by sex-specific effects in FCHL relatives (Table 4). When individual means were compared with the apoE3 subset, higher TC, LDL-C, and apoB in the apoE4 subset were observed in women (p<0.05 or p<0.01), whereas the mean LDL-C was only significantly higher in the men in the apoE4 subset (p<0.05). However, the apoE4 subset exhibited a significantly lower level of apoB (p<0.05), compared with the apoE3 subset, and conversely for the apoA1 levels in men (p<0.05). On the other hand, the apoE4 subset showed a higher trend for the TC and apoB levels, compared with the apoE3 subset, but it did not attain statistical significance in men (p>0.05).

Discussion

FCHL is a complex trait disease with an uncertain pattern of inheritance involving a number of genes. Modifier genes in relation to the FCHL phenotypes have been recently identified in different populations, including the apoA1-C3–A4 gene cluster, lipoprotein lipase, apolipoprotein C1, and lecithin: acyltransferase genes. Pajukanta et al recently reported that FCHL was associated with the gene encoding upstream transcription factor 1, especially in males with high TG.

Many studies have documented that genetic variance in lipid levels is associated with the apoE genotype, in either dyslipidemic or normolipidemic subjects. As in those previous studies, we identified that the frequency of the A4 allele in FCHL relatives was significantly higher than in unaffected FCHL relatives or normolipidemic family members. This suggests that overexpression of the A4 allele contributes to the development of the FCHL phenotype and is congruent with the results from a Dutch population with FCHL.

The frequency of the A2 allele in unaffected FCHL relatives or normolipidemic families was similar to...
reports from other Chinese populations. The and allele was the most prevalent for apoE in the FCHL families. Most studies have suggested that carriers are prone to die from coronary heart disease. Furthermore, Houlston et al. affirmed that the allele is one of the predisposing genetic factors to the development of FCHL. However, allele frequencies are highly heterogeneous in diverse populations. The allele is heterogeneous to cardiovascular risk and is not an important risk factor for coronary heart disease or stroke in elderly subjects. Despite conflicting evidence, this complex disease is determined by either genetic or environmental factors, so it is unlikely that a genetic locus will be entirely responsible for all affected individuals.

Our data also demonstrated that the contribution of apoE polymorphism to modification of the lipid and apolipoproteins levels clearly differed among FCHL relatives. Although the genotype-specific mean cholesterol levels may differ among apoE subsets, population studies have shown that subjects with the allele have the highest levels of TC, LDL-C and apoB, which are intermediate in those with the allele and lowest in subjects with the allele. An association of the allele with elevated TG has been reported in different populations but failed to attain significant difference between the apoE2 and -E3 subsets of FCHL relatives in the present study. As in the other study, we also did not find effects of apoE2 on the TG concentrations in normolipidemic individuals.

This present observations also demonstrate the contribution of apoE genotypes to the variance of lipoprotein phenotypes clearly differs in a gender-specific manner. Of the FCHL relatives, the allele was associated with higher levels of TC, LDL-C, and apoB in women, but it was relevant to the LDL-C level in men only. However, Kamboh et al. found that apoE genotypes affected the LDL-C and apoB levels in women but not in others. It is noteworthy that the allele was associated with higher apoA1 and lower apoB levels in men, but did not have a significant influence on any traits in the women in this study. Differences in lifestyle may be the underlying cause of the gender-specific influence of the apoE genotypes.

Body size is the consequence of either genetic or environmental factors. In this study, our data indicated a significant contribution of the allele to BMI in normolipidemic families, despite the small sample size. However, it was not observed in the FCHL relatives, in line with the observations in hypertriglyceridemic and familial hypercholesterolemic subjects. Furthermore, evidence from the Bogalusa Heart Study showed that the apoE2 subset had a lower BMI than the apoE3 subset of FCHL relatives, in line with the other studies. We can not extrapolate our observations because of the relatively small sample size. Second, we did not determine the size of the LDL particles to examine sdLDL, a characteristic feature of FCHL. However, we used the LDL-C/ApoB ratio as a surrogate measure for the presence of the sdLDL subclass, which is likely to be genetically determined because a decreased LDL-C/ApoB ratio predicts premature coronary artery disease in adults and children. From our results, the LDL-C/ApoB ratio was not significantly different between FCHL relatives and spouses, or between affected FCHL relatives and unaffected FCHL relatives. Although sdLDL and elevated apoB levels are consistent characteristics of FCHL, they are not being proposed as diagnostic features. This limitation was imposed by the small cohort size and limited spectrum of dyslipidemia. Nevertheless, the Third Workshop on FCHL also reported that apoB and sdLDL are potentially attractive parameters for improving the diagnostic criteria for FCHL.

In summary, the association of the apoE genotypes with lipid levels suggest that they contribute to the genetic risk of developing atherosclerotic diseases. McNeely et al. documented that apoE polymorphism was related to the development of FCHL in a 20-year prospective study, but not with FCHL at baseline. However, combined with the previous findings, our observations suggest that apoE genotypes contribute to the lipoprotein profile in Chinese FCHL families. Thus, further studies are needed to assess the long-term influence of apoE polymorphism on lipid levels in different populations, preferably with a prospective cohort design.

Acknowledgements

This study was supported by grant-in-aid from National Natural Science Foundation of China (No. 30200105), National Natural Science Foundation of Beijing (No. 7022027), Beijing Municipal Science & Technology Commission (No. 2003A039) and SRF for ROCS, SEM.

References

