Interaction of ADIPOQ Genetic Polymorphism With Blood Pressure and Plasma Cholesterol Level on the Risk of Coronary Artery Disease

Yi-Cheng Chang, MD†‡; Ju-Ying Jiang, MD*‡†; Yi-Der Jiang, MD, PhD**; Fu-Tien Chiang, MD, PhD***; Ju-Yen Hwang, MD, PhD***; Wen-Pin Lien, MD**; Lee-Ming Chuang, MD, PhD***†

Background: The protective effect of +45T>G polymorphism in the adiponectin gene (ADIPOQ) on coronary artery disease (CAD) has been demonstrated in European populations, so this study investigated the effect of +45T>G polymorphism on the risk of CAD and its interactions with other metabolic risk factors in a Chinese population.

Methods and Results: The +45T>G polymorphism (rs2241766) of ADIPOQ was genotyped in 600 patients with angiographically diagnosed CAD and in 718 controls. The G allele at the +45T>G polymorphism was associated with a lower risk of CAD (odds ratio (OR), 0.76; 95% confidence interval (CI), 0.64–0.89; P=0.001). The protective effect of the G allele at +45T>G polymorphism was magnified at blood pressure <140/90 mmHg (OR, 0.65; 95%CI, 0.51–0.82; P=0.0004), but disappeared at blood pressure ≥140/90 mmHg (OR, 0.98; 95%CI, 0.76–1.28; P=0.93), indicating an interaction between +45T>G polymorphism and blood pressure on CAD risk (P=0.02 for interaction). A similar interaction was also observed between plasma cholesterol level and the +45T>G polymorphism.

Conclusions: An association of ADIPOQ genetic polymorphism with CAD risk is modified by traditional risk factors, such as blood pressure and plasma cholesterol level. (Circ J 2009; 73: 1934–1938)

Key Words: ADIPOQ; Blood pressure; Chinese; Cholesterol; Coronary artery disease; Interaction; Single nucleotide polymorphism

Adiponectin, an adipocyte-secreted protein encoded by the ADIPOQ gene (Entrez Gene ID: 9370), exerts insulin-sensitizing and anti-atherogenic effects.1-2 A prospective study found that plasma adiponectin concentration is associated with the risk of acute myocardial infarction independent of traditional cardiovascular risk factors.3 Cross-sectional studies have also demonstrated a reverse relationship between the total or high-molecular weight form of adiponectin level and risk of coronary artery disease (CAD) or coronary events.4-8 Adiponectin inhibits the progression of atherosclerosis in apoE-deficient mice.9 In adiponectin-deficient mice, severe neointimal thickening and proliferation of vascular smooth muscle cells has been observed in mechanically injured arteries while adenovirus-mediated supplement of adiponectin attenuated neointimal proliferation.10 These findings indicate a protective role of adiponectin in the progression of atherosclerosis.

The adiponectin gene consists of 3 exons and 2 introns spanning a 17-kb region11 and has been located on chromosome 3q27, a genomic region linked with the insulin resistance trait.12 Several common genetic variations of the human adiponectin gene have been reported. Among them, a single nucleotide polymorphism (SNP) +45T>G in exon 2 (rs2241766) of ADIPOQ has been extensively studied.13,14 The G allele at the +45T>G polymorphism has been associated with higher serum adiponectin concentrations,15,16 higher adiponectin mRNA expression in adipose tissue,17 enhanced rosiglitazone response on serum adiponectin concentrations,18,19 improved insulin sensitivity,20-22 and a lower risk of obesity.17 Several studies also report a protective effect of the G allele at the +45T>G polymorphism on the risk of CAD in European populations.23-25 However, no studies have investigated the effect of +45T>G polymorphism on the risk of CAD in a Chinese population, so we aimed to analyze this, as well as the interaction between various cardiovascular risk factors with +45T>G polymorphism on CAD risk.

Methods

Participants: We recruited 600 participants (478 men, 122 women) with...
angiographically diagnosed CAD from the National Taiwan University Hospital. The diagnostic criterion for CAD was >75% stenosis of at least 1 segment of a major coronary artery found on coronary angiography performed because of clinical angina or abnormal resting ECG, or a documented history of transmural myocardial infarction. We also recruited 718 controls (383 men, 335 women) without a history of atherosclerotic vascular disease from the health check-up service of the hospital (275 participants) and a family cohort of Chinese origin (443 unrelated probands). The study was approved by the institutional review board and each participant provided written informed consent before enrollment.

Demographic and Biochemical Measurements
We measured the body weight and height of participants while they wore light clothing and had bare feet. Blood pressure (BP) was measured using a mercury sphygmomanometer on 3 separate intervals. Blood was taken in the fasting state for measurements of plasma glucose, total cholesterol and triglyceride levels using an autoanalyzer (Hitachi 7250 Special, Tokyo, Japan).

DNA Extraction and Genotyping of +45T>G Polymorphism of ADIPOQ
Genomic DNA was prepared from frozen whole blood using a Puregene kit (Promega, Madison, NY, USA). The +45T>G polymorphism of ADIPOQ was genotyped using the polymerase chain reaction-restriction fragmented length polymorphism method as described previously.17,22

Statistical Analysis
All data are expressed as mean ± standard deviation. Differences in continuous parameters, such as age, between the 2 groups were analyzed using Student’s t-test. The allelic and genotypic association with CAD and OR estimation was analyzed using the chi-squared test with the TT genotype as the reference genotype. Univariate or multivariate logistic regression was used to estimate the unadjusted and adjusted association for other known CAD risk factors, including age, sex, body mass index (BMI), total cholesterol, triglyceride, BP, fasting plasma glucose, and current smoking. A P value <0.05 was considered statistically significant.

Results
Clinical characteristics of Study Participants
The clinical characteristics of the study participants are shown in Table 1. Participants with CAD were older and had higher BP, plasma total cholesterol, triglyceride, and fasting glucose levels than the controls. There were also more men and current smokers among the CAD cases.

Association of +45T>G Polymorphism of ADIPOQ With CAD and Other CAD Risk Factors
The genotype distribution of +45T>G polymorphism was within the Hardy-Weinberg equilibrium in both CAD cases and controls. The G allele at the +45T>G polymorphism was associated with a lower risk of CAD (odds ratio (OR), 0.76; 95% confidence interval (CI), 0.64–0.89; P=0.001; Table 2). The OR was 0.78 (95%CI, 0.61–0.98; P=0.03) for the GT genotype and 0.57 (95%CI, 0.37–0.86; P=0.005) for the GG genotype (Table 2). The genetic model was best fit with an additive model. The G allele was associated with a trend of lower systolic BP (P=0.07), but was not associated with other metabolic phenotypes, including diastolic BP (P=0.22), BMI (P=0.90), fasting plasma glucose (P=0.19), triglyceride (P=0.78), or total cholesterol (P=0.37) level in the control group. The association of the G allele with CAD was attenuated, but still significant, after adjustment for known CAD risk factors (adjusted OR, 0.75; 95%CI, 0.57–0.98; P=0.03; Table 3).

Interactions of +45T>G Polymorphism With Other CAD Risk Factors on CAD Risk
We next examined whether there was any interaction between the +45T>G polymorphism and traditional risk factors on the risk of CAD. An interaction between +45T>G polymorphism and BP was noted. The G allele was associated with a significantly lower risk of CAD in participants with BP <140/90 mmHg (OR, 0.98; 95%CI, 0.76–1.28; P=0.03), but the protective effect disappeared in participants with BP ≥140/90 mmHg (OR, 0.98; 95%CI, 0.76–1.28; P=0.93), indicating an interaction between BP and +45T>G polymorphism on CAD risk (P=0.02 for interaction) (Figure B). A similar interaction was also found between plasma

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Controls, n (%)</th>
<th>CAD cases, n (%)</th>
<th>OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>309 (44.98)</td>
<td>316 (52.67)</td>
<td>0.78 (0.61–0.98)</td>
<td>0.03</td>
</tr>
<tr>
<td>TG</td>
<td>299 (43.52)</td>
<td>238 (39.67)</td>
<td>0.57 (0.37–0.86)</td>
<td>0.005</td>
</tr>
<tr>
<td>GG</td>
<td>79 (11.50)</td>
<td>46 (6.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>917 (66.73)</td>
<td>870 (72.55)</td>
<td>0.76 (0.64–0.89)</td>
<td>0.001</td>
</tr>
<tr>
<td>G</td>
<td>457 (33.27)</td>
<td>330 (27.45)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval. Other abbreviation see in Table 1.
total cholesterol level and +45T>G polymorphism. The protective effect of the G allele was magnified in participants with a plasma total cholesterol level <200 mg/dl (OR, 0.68; 95%CI, 0.53–0.87; P=0.001), but disappeared when the total cholesterol level was ≥200 mg/dl (OR, 0.87; 95%CI, 0.68–1.13; P=0.29), indicating a interaction between ADIPOQ polymorphism and the plasma total cholesterol level on CAD risk (P=0.03 for interaction) (Figure A). It is of note that the correlation between plasma cholesterol level and mean BP was weak in the present study (correlation coefficient, 0.06). There was no significant interaction between the +45T>G polymorphism and other CAD risk factors (data not shown).
Discussion
The present study showed that ADIPOQ +45T>G polymorphism is significantly associated with CAD, independent of known CAD risk factors, in the Chinese population of Taiwan. Furthermore, the protective effect of the G allele at +45T>G polymorphism is modified by BP and plasma cholesterol level, which indicates that there are interactions between genetic factors and traditional risk factors.

Consistent with our findings, the G allele of the +45T>G polymorphism has been associated with lower risk of CAD in European and US populations. The protective effect of the G allele was also found in type 2 diabetic patients. However, other studies have reported contradictory results in the general population or in type 2 diabetic patients. The discrepancy might be explained by differences in disease definition and ethnic background. However, given the strong influence of BP and plasma cholesterol level on the genetic effect of the G allele, it is also possible that the prevalence of hypercholesterolemia, hypertension and therapeutic intensity differed in the other studies and interfered with the observed associations. A larger study taking into account the modulating effects of metabolic factors is needed to clarify the association.

The mechanism of how the +45T>G polymorphism of ADIPOQ relates to CAD risk remains to be determined. The G allele at the +45T>G polymorphism has been associated with improved insulin sensitivity and a lower risk of obesity, which may in turn reduce CAD risk. However, the G allele was not significantly associated with BMI or other insulin resistance-related metabolic traits in the control group of the present study. The lack of association may be a result of the homogeneity and limited size of the control group. However, the protective effect of G allele on CAD risk remained significant by adjustment of other metabolic factors, which may in turn reduce CAD risk. Finally, drug information was missing for some participants, so interference by drug therapy could not be analyzed or excluded. However, as most CAD patients receive anti-hypertensive or lipid-lowering therapy, the present study is actually more applicable to common daily practice.

In conclusion, the present study demonstrates that the +45T>G polymorphism of ADIPOQ is associated with CAD, independent of other known risk factors. The association is strongly modified by BP and plasma cholesterol level. The findings highlight the importance of gene–environment interaction in the development of complex disorders.

Acknowledgments
We thank all the participants in this study. We also thank Ms SS Kuo and Ms KC Lee for their technical support. This work was supported in part by grants from the National Science Council of the R.O.C. (NSC 92-3112-B-002-015; NSC 93-2752-B-002-009-PAE).

References