Oxygen radicals, and other reactive oxygen species, may play an important role in the pathophysiology of atherosclerosis, stroke, and other cardiovascular diseases. Mechanisms that account for oxidative stress in different cardiovascular diseases are diverse; for example, increases in activity of NAD(P)H oxidase, “uncoupling” of nitric oxide synthase, and maladaptive changes in expression of antioxidants can all contribute to increases in oxidative stress. Very different patterns of pro- and antioxidant mechanisms that contribute to increases in oxygen radicals in atherosclerotic plaques, hemorrhagic strokes, and aortic valve stenosis have been observed. A disappointment, in relation to the hypothesis that oxygen radicals contribute to cardiovascular risk, is that many studies indicate that antioxidant vitamins fail to reduce the risk of cardiovascular disease. Better understanding of mechanisms that lead to increases in oxidative stress in different cardiovascular diseases may lead to more effective antioxidant prevention or treatment of diseases. (Circ J 2009; 73: 201–207)

Key Words: Antioxidant mechanisms; Aortic valve stenosis; Oxidative stress; Stroke

Superoxide and other reactive oxygen species (ROS) are increased in arteries in several major cardiovascular diseases. This finding led to one of the most intriguing hypotheses in contemporary vascular biology: ROS play a critical role in pathophysiology of atherosclerosis, stroke, hypertension, and other cardiovascular diseases. In the past, the concept that ROS, including oxygen radicals, may affect the heart and blood vessels focused on (1) generation of ROS by leukocytes, and (2) vascular damage during ischemia/reperfusion. Leukocytes release ROS at a high concentration, which kills bacteria, and thereby may produce vascular damage. In addition, reperfusion of blood after ischemia generates ROS, and reperfusion may thereby damage reperfused tissues, including heart, brain, and liver. It is now clear that ROS play a far more important role than previously recognized, in normal signaling and physiological mechanisms, as well as in pathophysiology. Low levels of ROS play an important role in normal cellular signaling pathways and modulate growth and apoptosis of endothelium, and of vascular and cardiac muscle. These changes are important during development, and also during adaptive changes that lead to hypertrophy and remodeling. High levels of ROS are generated in many disease states, including atherosclerosis and hypertension, and contribute to endothelial dysfunction, and to risk of cardiovascular consequences. It is now widely accepted that excessive superoxide inactivates nitric oxide (NO) and contributes to endothelial dysfunction (eg, Arimura et al), which is a risk factor for cardiovascular disease. A more recent hypothesis is that superoxide dismutases (SODs) may augment endothelium-mediated vasodilatation, by generation of hydrogen peroxide as well as by dismutation of superoxide. In some vascular beds, hydrogen peroxide appears to be an endothelium-derived relaxing factor. The interaction of ROS, antioxidants and endothelium is complex and important.

This review will focus on the role of ROS (especially superoxide) in cardiovascular diseases.

Mechanisms of Oxidative Stress

Two mechanisms that may lead to increases in superoxide in cardiovascular diseases are increased generation or decreased dismutation (or inactivation) of superoxide. The usual mechanism for increases in superoxide in cardiovascular disease is by increased generation. Many enzymes (including NAD(P)H oxidase, xanthine oxidase, cyclooxygenase, “uncoupled” NO synthases [NOS]) can generate superoxide and may contribute to increases in superoxide in cardiovascular diseases. Leukocytes, in inflammatory states, also may contribute to increases in superoxide.

Although decreased dismutation or inactivation of superoxide may produce high levels of superoxide, this mechanism appears to be a less common cause for oxidative stress in disease states than increased generation of superoxide. In fact, oxidative stress typically stimulates antioxidant mechanisms, including SODs, so oxidative stress usually is associated with a compensatory increase in levels of SODs. Redox/inflammatory signal sensitive regions in the promoter regions increase expression of SODs during oxidative stress. There are some exceptions to this concept; for example, in some studies, oxidative stress associated with heart failure and aging appears to be caused in part by decreased levels of SODs, as well as increased generation of ROS.

Mice with heterozygous or homozygous deficiency of MnSOD, CuZnSOD, or extracellular SOD (ecSOD) have been generated and are used to examine cardiovascular consequences of increased levels of superoxide. In humans, however, heterozygous or homozygous deficiency of antioxidant genes is rare. Gene variants of SODs, however, may reduce efficacy of antioxidants; for example, ecSOD
is a common gene variant that impairs the localization of the protein, and reduces the protective effect of ecSOD against vascular dysfunction. Of interest is the finding that the risk of cardiovascular disease is increased in people with \textit{ecSOD}^R213G.

This review will focus on some recent studies of oxidative stress in cardiovascular disease using 3 diverse examples to illustrate mechanisms by which oxidative stress may be increased by a variety of mechanisms, and have differing consequences in different tissues (Fig 1). An underlying question will be whether oxidative stress, which clearly is increased in several major cardiovascular diseases, is a cause or an association. Because many studies indicate that antioxidant vitamins fail to reduce risk of cardiovascular diseases (eg, Jialal and Devaraj12), it is important to consider whether oxidative stress does indeed play a causative role in cardiovascular diseases.

Calcific Aortic Stenosis

Aortic valvular stenosis, which is sometimes described as senile degenerative calcific stenosis, is an extremely important and greatly under-studied clinical problem. The most frequent cardiovascular operation in the US is coronary artery bypass grafting (which is decreasing in number) and the second most frequent operation is replacement of cardiac valves, primarily the stenotic aortic valve13 The prevalence of calcific aortic valve stenosis, and the number of operations to replace the valve, is increasing as the population ages.

The histological appearance of stenotic aortic valves resembles atherosclerotic lesions, with lipids, inflammatory cells, neoangiogenesis, and calcification14 Risk factors for aortic stenosis and atherosclerosis are also similar, and include older age, hypercholesterolemia, hypertension, smoking, and diabetes13,15

Based on the similarity of aortic stenosis and atherosclerosis, in relation to histological appearance and risk factors, one might suggest that aortic stenosis is simply atherosclerosis of the valve. There are major differences, however, between the pathophysiology of aortic stenosis and atherosclerosis (Fig 1), some of which are summarized below.

Oxidative Stress

Superoxide is increased in stenotic aortic valves16 as well as atherosclerotic vascular plaques. We stumbled on this finding in genetically altered mice, which are hypercholesterolemic (because they are deficient in lipoprotein receptors: \textit{LDLr}^{−/−}) and especially prone to atherosclerosis (because they have apolipoprotein B100 instead of apoB48). We found that approximately one-third of old \textit{LDLR}^{−/−} \textit{apoB100/100} mice develop severe aortic stenosis, and have high levels of superoxide in the aortic valve16

Superoxide levels also are increased in stenotic aortic valves from humans17 We found that in stenotic valves removed during surgical replacement of the aortic valve,
superoxide is increased greatly near the calcified regions of the valve. Others also found that in valves obtained at surgery or autopsy, oxidative stress is increased in stenotic aortic valves. Thus, in calcified stenotic aortic valves, as well as in atherosclerotic lesions, oxidative stress is increased.

However, there are important differences in the mechanisms that account for oxidative stress in aortic valves and in atherosclerotic arteries (Fig 2). In calcific aortic stenosis, increased production of superoxide may be mediated by “uncoupling” of NOS, because NOS primarily produces superoxide instead of NO. NAD(P)H expression and activity do not appear to be increased in aortic valves. In striking contrast, increased expression and activity of NAD(P)H oxidase appear to be a major mechanism for oxidative stress in atherosclerotic lesions!

Antioxidant Mechanisms

The role of SODs differs in calcific aortic stenosis and atherosclerotic lesions. In the aortic valve, there is a profound decrease in the expression of all 3 isoforms of SODs in calcified regions, and SOD activity is decreased. Thus, decreases in SODs contribute to oxidative stress in the aortic valve. We were surprised by this finding, because in most tissues with increased oxidative stress, there is a protective, compensatory increase in the levels of SODs. In contrast to the decrease in SODs in calcific aortic stenosis, they have been reported to increase (or not change) in atherosclerotic vascular lesions. Thus, there are fundamental differences in mechanisms that lead to increased oxidative stress in the aortic valve and atherosclerotic vascular lesions.

Furthermore, consequences of oxidative stress may differ in aortic stenosis and in atherosclerotic vascular lesions. Many proteins and transcription factors that play a key role in fibrosis and calcification are redox-sensitive. In the aortic valve, it is likely that both fibrosis and calcification contribute to restrictions in the motion of the cusps, reduction in the valve orifice, and progression to severe stenosis. In contrast, in arteries, the increase in fibrosis of atherosclerotic plaques is probably protective, by transforming vulnerable plaque to a stable lesion. Thus, the consequences of increases in pro-fibrotic and pro-calcific gene expression are site specific and depend on the function of the tissue. Appreciation of such complexities is critical when designing therapies for patients with comorbid conditions, such as atherosclerosis and aortic valve stenosis, where treatment that improves valve function may increase the propensity for plaque rupture or instability.

Oxidative stress, in addition to contributing to fibrosis, may activate matrix metalloproteinases (MMPs) in the aortic valve and arteries. In the valve, MMPs may play a permissive role in the expansion of calcification of the valve, and degraded fragments of collagen and elastin also may increase pro-calcific signaling in valvular interstitial cells. Activation of MMPs in arteries is probably harmful in a different way, by contributing to plaque rupture.

Treatment

HMG-CoA-reductase inhibitors (statins) are undergoing clinical studies to test the hypothesis that they may slow the progression of aortic stenosis (eg, Cowell et al, Rossebø et al). The rationale is strongly supported by the enormous beneficial effect of statins in reducing cardiovascular events, and by the findings of retrospective studies. But on closer examination, the logic may be flawed in applying the effects of statins on arteries to their effects on valves. Regression of atherosclerotic lesions in arteries is accompanied by progression of fibrosis, and perhaps of calcification. Fibrosis in blood vessels during treatment with statins probably is beneficial, by stabilizing vulnerable plaque, but it is likely that fibrosis is harmful in the aortic valve, by contributing to progression of stenosis. Thus, based on findings in arteries, it is difficult to predict whether statins will prove to be useful or harmful in treating aortic stenosis.

We have studied “Reversa” mice which have a genetic “switch,” with aortic stenosis in which hypercholesterolemia can be effectively treated without statins. Our preliminary data suggest that normalization of cholesterol in the presence of early lipid deposition and calcification of the aortic valve completely prevents development and progression of aortic stenosis. Those findings imply that aggressive reduction of lipids in patients with hypercholesterolemia, if started early, may be useful in slowing the progression of aortic stenosis.

Cause or Association?

We and others have demonstrated that oxidative stress is associated with calcific aortic stenosis in mice and humans. It will be of great interest and importance to determine whether superoxide contributes to the initiation and progression of aortic stenosis, perhaps by an effect on redox-sensitive genes that modulate fibrosis and calcification. Alternatively, superoxide may not produce aortic stenosis and, perhaps, aortic stenosis per se increases oxidative stress.

Our preliminary evidence suggests that superoxide in the aortic valve increases before the valve becomes stenotic,
which is compatible with a causal role for superoxide (and/or other ROS) in aortic stenosis. Interventions, not an association, will be the key in determining whether oxidative stress is a cause or effect for aortic stenosis. The finding, that treatment of hypercholesterolemia with a genetic switch reduces superoxide in the aortic valve and stops development of stenosis, also suggests a causal role for superoxide. Treatment of hypercholesterolemia with a genetic switch reduces superoxide in the aortic valve and stops development of stenosis, also suggests a causal role for superoxide.

Tempol (which reduces superoxide, but increases hydrogen peroxide) failed to slow the development of aortic valve disease in rabbits. Because rabbits do not develop hemodynamically significant aortic stenosis, however, and because tempol increases hydrogen peroxide, the finding is not definitive, in relation to the role of ROS in progression of aortic stenosis. It will be of great interest to see whether appropriate antioxidants slow the progression of aortic stenosis in an experimental model that develops hemodynamically significant aortic stenosis.

Serotonin-Induced Valvulopathy

High levels of serotonin, in patients with carcinoid tumors or during treatment with fenfluramine/phentermine or pergolide, may contribute to a proliferative valvulopathy. Serotonin is released from carcinoid tumors into venous blood. The tricuspid and pulmonic valves are especially likely to develop disease, presumably because levels of serotonin in the blood are highest in the right side of the heart, and serotonin is metabolized in the pulmonary circulation before reaching valves on the left side of the heart.

In preliminary studies, we have found that high concentrations of serotonin increase levels of superoxide in normal tricuspid and pulmonic valves obtained from humans. When we incubated the valves in a monoamine oxidase (MAO) inhibitor, to increase levels of serotonin and thus oxidative stress, we were surprised to find that the MAO inhibitor reduced the oxidative stress. The findings suggest that production of oxidative stress in human cardiac valves by serotonin may be mediated in part by metabolism of serotonin.

As discussed above, in relation to aortic stenosis, redox-sensitive genes may play a key role in modification of extracellular matrix in cardiac valves. Thus, it is possible that oxidative stress, produced by MAO-mediated metabolism of serotonin, contributes to tricuspid and pulmonic valvulopathy in patients with carcinoid tumor, or during treatment with fenfluramine/phentermine or pergolide. Interventions in vivo with an MAO inhibitor and/or an antioxidant will be required to establish a causal relationship.

Hemorrhagic Stroke

Spontaneous intracranial hemorrhage (ICH) accounts for only 10–15% of strokes, but has a very high mortality. The major risk factor for ICH is hypertension. There has been little progress in understanding the pathophysiology and treatment of ICH compared with ischemic stroke, in part because there is no experimental model of spontaneous ICH in hypertensive mice.
Stroke-prone spontaneously hypertensive rats (SHRSP) have been exceedingly useful in studying stroke, but they generally develop ischemic infarcts and, when hemorrhage occurs, ICH usually is secondary to hemorrhagic transformation from an ischemic infarct. In addition, hemorrhagic strokes in SHRSP occur primarily in the cerebrum, not in the brain stem, cerebellum, and basal ganglia (which are the primary sites of hemorrhage in hypertensive humans).

We have developed 2 models of ICH in hypertensive mice. First, we found that, in a genetic model of hypertension, double transgenic mice (R+A+) that overexpress human renin (R+) and angiotensinogen (A+), administration of a high-salt diet and an inhibitor of NOS (L-NAME), and acute hypertension (and especially hypertension produced by angiotensin II) increases ROS, oxidative stress activates MMPs, and may thereby produce oxidative stress may play a key role in ICH during hypertension. It is reasonable, therefore, to suggest that oxidative stress is causally related to ICH, or simply an association.

A major goal of our studies of stroke-prone hypertensive mice is to test the hypothesis that oxidative stress contributes to spontaneous ICH. The hypothesis is that, in addition to producing endothelial dysfunction and many other effects, oxidative stress activates MMPs and may thereby produce vascular rupture and ICH. This mechanism is attractive because activation of MMPs is redox-sensitive and hypertensive (especially hypertension produced by angiotensin II) increases ROS so there is a milieu that is favorable for generation of ROS in hypertension, with activation of MMPs.

The most frequently used method in experimental animals to examine the consequences of ICH is to inject blood or bacterial collagenase (which dissolves extracellular matrix and lamina of blood vessels, and produces ICH) directly into the brain (eg, Tang et al). The studies suggest that intraparenchymal blood produces an increase in superoxide, and the increase in superoxide is related to activation of NAD(P)H oxidase (Fig 3). In addition, it appears that SODs decrease after injection of blood or lysed erythrocytes into the brain. Thus, oxidative stress in response to ICH appears to be produced both by activation of NAD(P)H oxidase and by decreased levels of SODs.

Because MMP activity is redox-sensitive, we have measured MMP activity in the brains of hypertensive mice, before and after ICH. Our preliminary data (unpublished) suggest that MMP activity increases in parallel with levels of superoxide: MMP activity increases before spontaneous ICH. The increase in superoxide is related, at least in part, to increased NAD(P)H oxidase activity (Fig 3). It is not known whether the levels of SODs in the brain or its vessels change in response to spontaneous ICH.

Our studies indicate that oxidative stress precedes ICH in hypertensive mice, and increases further after ICH. Furthermore, our preliminary data suggest that MMP activity (which is redox-sensitive) increases in parallel with oxidative stress. It is reasonable, therefore, to suggest that oxidative stress may play a key role in ICH during hypertension.
SOD Gene Variant

We have pointed out that oxidative stress usually is produced by increased generation of superoxide (eg, by an increase in NAD(P)H oxidase activity or uncoupling of NOS) and in some disease states (eg, aortic stenosis and ICH) by decreased levels of SODs. In other research, we have chosen to focus on the role of ecSOD, because expression of ecSOD in blood vessels is high, ecSOD protects NO against inactivation by superoxide as NO diffuses from endothelium to smooth muscle cells, and ecSOD thereby protects against endothelial dysfunction (Fig 4).25,26

Gene transfer of ecSOD improves endothelial function in spontaneously hypertensive rats (SHR) and other disease states (eg, Chu et al,17 Iida et al18). Beneficial effects of ecSOD require the heparin-binding domain,27 which mediates binding of ecSOD to heparan sulfate proteoglycans on the cell surface. Bound ecSOD may be endocytosed into cytoplasm, but not translocated to the nucleus.19

Deletion of the ecSOD gene in mice has little effect under normal conditions. When oxidative stress is increased, however, the gene protects against endothelial dysfunction. Our preliminary data (unpublished) indicate that ecSOD is especially important in protecting against endothelial dysfunction in old mice.20

We are not aware of a loss-of-function variant of the ecSOD gene in humans. There is however, a gene variant of ecSOD (ecSODR213G) in the heparin-binding domain,28 which is common, compared with most other gene variants (perhaps 2–5% of humans).29 The antioxidative activity of ecSOD is not reduced by the ecSODR213G gene variant, but binding to cells is impaired. One might expect, therefore, that the ecSODR213G gene variant would predispose blood vessels to oxidative stress.

Studies of gene variants are of great importance. The journal, Science, indicated that “human genetic variation” is the “breakthrough of the year” for 2007. We have performed studies to examine mechanisms by which ecSODs may predispose to disease states.

One of us (YC) made a recombinant adenovirus that expresses ecSODR213G, and compared the vascular effects with those of normal ecSOD.30 There was much less binding to the endothelial cells and aorta by ecSOD213G than by normal ecSOD. The important new finding was that, in contrast to the beneficial effects of ecSOD on endothelial function and blood pressure in SHR, ecSODR213G had no significant beneficial effects. Similarly, ecSODR213G failed to protect against endothelial dysfunction in heart failure31 and after endotoxin.32 The demonstration that ecSODR213G fails to protect against endothelial dysfunction provides a possible mechanism by which the ecSODR213G gene variant may predispose humans to vascular disease.11

What are the clinical implications of these findings? One study demonstrated, in diabetic patients undergoing hemodialysis, that patients with ecSODR213G had increased mortality from ischemic heart disease.33 In addition, in a large association study, the risk of ischemic heart disease was increased in heterozygotes with ecSODR213G.30

It was of interest, in the large study of subjects with ecSODR213G, that increased risk of ischemic heart disease was not observed until subjects were greater than 70 years old.34 The finding implies that in humans, as in mice, the protective effect of ecSOD is limited until old age, when oxidative stress increases or when cumulative effects of oxidative stress become evident.

As DNA sequencing becomes more efficient, additional human gene variants are being uncovered in large populations (eg, Dahl et al34). Studies in experimental animals of human gene variants will continue to provide mechanistic understanding into physiological function of the genes.

Summary

As illustrated in Fig 1, oxidative stress may contribute to a variety of important cardiovascular diseases. It is quite remarkable that mechanisms that can produce oxidative stress are so diverse (eg, increased NAD(P)H oxidase activity in arterial plaques and in relation to ICH, but not in aortic valve stenosis).

It is disappointing that antioxidant vitamins have failed to reduce the risk of cardiovascular diseases, but, considering the complexity and diversity of mechanisms associated with oxidative stress in different cardiovascular diseases, we believe that it is unlikely that non-targeted antioxidant therapy (in terms of specific ROS and subcellular compartmentalization) will prove to be efficacious.

In future studies, it will continue to be of great importance to address 3 questions. First, what enzymatic mechanisms account for oxidative stress in cardiovascular diseases? Second, based on appropriately targeted antioxidant interventions, is oxidative stress an important cause of cardiovascular disease in experimental animals? Third, with better understanding of mechanisms, will antioxidants be useful in the prevention or treatment of cardiovascular diseases in humans?

Acknowledgments

We thank Shinichiro Iida, Masuo Ohashi, Donald Lund, Frank Faraci, Gary Baumbach, Robert Weiss, and Robert Brooks, who participated importantly in studies described in this review. We thank Arlinda LaRose for assisting with the preparation of the manuscript, and Teresa Ruggle for preparing the figures. Studies described in this review were supported by National Institutes of Health grants HL-62984 and NS-24621, and funds provided by a Carver Research Program of Excellence.

References

Oxidative Stress

