Coordination of Vasomotor Responses by the Endothelium

Kim A. Dora, PhD

Increases in the diameter of small resistance arteries and arterioles occur secondary to processes that can be dependent or independent of changes in membrane potential. Hyperpolarization reduces the opening of voltage-gated calcium channels and thereby the stimulus for contraction of these resistance vessels. The stimulus for smooth muscle cell (SMC) hyperpolarization can occur directly via opening K+-channels expressed within those cells, but can also occur in response to stimulation of endothelial cells (ECs). This endothelium-dependent hyperpolarization (EDH) of smooth muscle often occurs in response to agonists that stimulate a rise in the Ca2+ concentration of ECs, which in turn can open Ca2+-activated K+-channels to hyperpolarize the ECs, and if present, patent gap junctions connecting ECs to SMCs (myoendothelial gap junctions) can potentially enable direct electrical coupling. There is also evidence to suggest a diffusible factor or factors hyperpolarizes SMCs (EDHF pathways). Furthermore, whether evoked in ECs or SMCs, hyperpolarization can spread a considerable distance to neighboring cells via gap junctions, causing remote dilatation termed ‘spreading’ or ‘conducted’ dilatation. This process is endothelium-dependent and likely relies on both homo- and heterocellular gap junctions. This review will focus on the cross-talk between ECs and SMCs that coordinates the spread of hyperpolarization and thus modulates smooth muscle tone. (Circ J 2010; 74: 226–232)

Key Words: Arteries; Conduction; Endothelium-derived factor; Ion channels; Vasodilation

Coordination of vasomotor responses is a fundamental property of resistance vessels and enables uniform changes in diameter within segments of arteries. An integral aspect of these responses is the ability of both current and small molecules to pass through the gap junctions that connect the cells within the vessel wall. In arteries, where the endothelium and smooth muscle cells (SMCs) are well coupled, a signal for hyperpolarization can originate in either the endothelial cells (ECs) or the SMCs, and increase the membrane potential in both cell types. Hyperpolarization of SMCs can be evoked via a variety of direct and indirect pathways, to include direct activation of SMC ATP-sensitive K+-channels (KATP-channels) with levcromakalim, and secondary to activation of EC calcium-activated K+-channels (KCa-channels) by acetylcholine (ACH). The hyperpolarization then leads to vasodilatation, mainly by reducing Ca2+ influx into SMCs via voltage-gated calcium channels. A key fundamental difference between agonists that can evoke hyperpolarization and those that do not is the ability to evoke ‘spreading’ or ‘conducted’ responses in addition to ‘local’ dilatation at the site of agonist delivery. This phenomenon has been well studied within the microcirculation, but increasing evidence also supports an important role for spreading dilatation in the small resistance arteries of the body.

Local Hyperpolarization

Endothelium-dependent hyperpolarization is perhaps best known as involving endothelium-dependent hyperpolarization factor or factors (EDHF), which describes a ubiquitous pathway for dilatation predominant in the smaller resistance arteries of the body. Although originally assumed to be a single, unidentified diffusible factor analogous to endothelium-derived relaxing factor (EDRF ie, nitric oxide (NO)), EDHF describes a complex pathway involving diffusible factors and/or the spread of hyperpolarization radially through myoendothelial gap junctions (MEGJs). As such, it is perhaps more accurately described simply as endothelium-dependent hyperpolarization or EDH.1-4 Despite considerable past confusion in the field, 3 NO/PGL2-independent EDHF pathways linking ECs to myocyte hyperpolarization and relaxation have now emerged. (1) First, K+ efflux through EC KCa-channels into the myoendothelial extracellular space causes smooth muscle hyperpolarization via Na+/K+ATPase and possibly Kx-channels (2) KCa-channel activity in the endothelium evokes hyperpolarization passing to the muscle through MEGJs. (3) [Ca2+] increase in the endothelium leads indirectly to the formation and release of arachidonate metabolites of cytochrome P450 (epoxyeicosatrienoic acids), and subsequent activation of BKCa-channels in smooth muscle. With the latter, evidence suggests a fairly restricted role, as a component of EDH in (mainly large) coronary arteries, and
Endothelium-Dependent Hyperpolarization

Figure 1. Resistance artery structure and K\(_{\text{Ca}}\)-channel expression. The endothelium and internal elastic lamina (IEL) are shown in radial cross section (A) and en face in a pressurized rat mesenteric artery (B, modified from Dora et al, 2008\(^{11}\)), showing the position of endothelial cell (EC) projections through holes in the IEL (blue arrows). ECs green, smooth muscle cells grey, IEL hatch (white holes visible in B). (C) Another en face micrograph from a different artery showing the localization of K\(_{\text{Ca}2.3}\)-channels (blue) to EC borders and holes through the IEL. (Bottom panels) Fluorescence intensity reconstructed in the z-(radial) axis corresponding to a longitudinal line through the black arrow in the Upper panel. Blue indicates K\(_{\text{Ca}2.3}\)-channels, and the greyscale image, which was simultaneously acquired, shows the IEL with holes apparent at the points where channels can project through (arrowheads). Note that not every hole shows immunostaining. Data are modified from Dora et al, 2008,\(^{11}\) which also showed strong immunostaining for K\(_{\text{Ca}3.1}\)-channels, K\(_{\text{Ca}2.1}\)-channels and 2 isoforms of the Na\(^+\)/K\(^+\)-ATPase within the projections. (B, C) Bar=30\(\mu\)m.

Signalling Circuit Within EC Projections (ECPs)

ECPs through the internal elastic lamina of resistance arteries can make contact with SMCs, and at these points can form MEGJs. Using confocal fluorescence microscopy, these ECPs can be visualized in living tissue by loading dyes into ECs (Figure 1).\(^{10,11}\) The presence of MEGJs can be demonstrated using transmission electron microscopy of radially sectioned arteries and arterioles.\(^{12-14}\) Using this technique, careful study of serial sections can demonstrate the approximate frequency and size of the MEGJs within an artery, and has been shown in distal rat mesenteric arteries to occur at intervals of at least 1 per EC.\(^{15}\) It is worth noting that many ECPs were identified that did not form MEGJs,\(^{15}\) suggesting that the incidence of projections is far higher than 1 per EC. Whether ECPs were not seen to form MEGJs because of physical disturbance during tissue preparation, dynamic changes in MEGJ formation or accurate morphology is not crucial when it is considered that the close apposition of the 2 membranes reduces the diffusion distance for any released signaling molecule, including a true EDHF.

In small mesenteric resistance arteries of the rat, the ECP microdomain contains intermediate-conductance K\(_{\text{Ca}3.1}\)-channels (as predicted\(^8\)) and concentrated immunostaining for the Na\(^+\)/K\(^+\)-ATPase, a target for K\(^+\) serving as a diffusible hyperpolarizing factor or EDHF,\(^{11,16}\) and likely the Ins\(_3\) receptor.\(^{17}\) In this same region, connexin protein (Cx37, Cx40) is linked ultrastructurally to the presence of heterocellular MEGJs with the smooth muscle.\(^{16,18}\) The spread of EDH to the muscle appears highly dependent on Cx40 in the MEGJ,\(^{16}\) and in parallel to the spread of hyperpolarization through the MEGJs, efflux of K\(^+\) through K\(_{\text{Ca}3.1}\)-channels contributes to muscle hyperpolarization and relaxation by activating Na\(^+/\)K\(^+\)-ATPase.\(^{11}\) Pharmacologically, the ECP microdomain underlies selective recruitment of K\(_{\text{Ca}3.1}\)-channels to EDH during contraction of the artery, at which time it provides significant drive for smooth muscle relaxation.\(^{9,11}\)

Thus the ECP is effectively a microdomain (Figure 2) that is critically positioned to influence vasodilatation, including the generation and spread of EDH into the media. This process alone can evoke 100% dilatation in rat mesenteric resistance arteries.\(^{11,16,18}\)

EC Calcium Signaling and EDH

Although smooth muscle Ca\(^{2+}\) handling and its link to contraction/relaxation have been extensively studied, similar studies with ECs, particularly in situ and under physiological conditions are far less extensive. The endothelial monolayer is of course crucially important for normal function in the cardiovascular system, and dysfunction is an early and general feature of cardiovascular disease.\(^{19-21}\) The endothelial influence usually relates to changes in cytoplasmic Ca\(^{2+}\), for example in controlling vascular tone by the release of NO,
prostacyclin, and activation of EDH[1,2,10,22] Cytoplasmic [Ca2+] is modulated not only by the direct action of agonists and hemodynamic forces on the ECs, but also indirectly by communication with surrounding cells. Spontaneous and agonist-mediated rises in EC Ca2+ in intact arteries are usually observed as asynchronous waves of Ca2+ passing along individual ECs. These waves are not sensitive to blockade of ryodode receptors, and together with sensitivity to inhibitors of phospholipase C, support an important role for InsP\textsubscript{3} receptors.10,23 Likely expressed along the entire surface of the endoplasmic reticulum. The rise in EC Ca2+ and associated hyperpolarization are maintained by Ca2+ influx,21,24 although the exact pathways of both current and small molecules.80 There are also signaling circuits between ECs, as both KC\textsubscript{a}3.1-channels (green), which are inhibited by rises in extracellular K+, likely via the CaSR (orange) and PKA.11 and KC\textsubscript{a}2.3-channels (blue). Small rises in extracellular K+ in this space80 can amplify hyperpolarization by activating KC\textsubscript{a}1-channels (brown) and Na+/K+-ATPase (yellow),5 but does not preclude an effect within regions not at the ECP. Homo- and heterocellular coupling between ECs and SMCs can occur via gap junctions (red),16,17 allowing the intercellular passage of both current and small molecules.80 There are also signaling circuits between ECs, as both KC\textsubscript{a}2.3- and KC\textsubscript{a}3-channels are strongly expressed at EC borders,11 at sites very similar to the connexins.16,51,72 Together with Na+/K+-ATPase, this may serve to amplify the spreading dilatation response.82,83,70 Various Ca2+ influx (eg, voltage-gated Ca2+-channels in SMCs, purple) and release channels, transporters and Ca2+ pumps (all represented generically as grey) are found in both ECs and SMCs. In mesenteric resistance arteries we recently demonstrated spontaneous Ca2+ events in ECs under physiological pressure.15 Localized increases in cytoplasmic Ca2+ concentration originated from the endoplasmic reticulum, depended on InsP\textsubscript{3} (Ca2+puffs), not RyR, and could be modulated not only by endothelial ion channels, but also by the SMCs via MEGJs, both basally and during agonist-evoked contraction. In mesenteric resistance arteries, spontaneous Ca2+ events in the endochal have now been termed ‘pulsars’ and appear to align with ECPs.42 KC\textsubscript{a}3.1-channels are restricted to these projections,11,42 and are activated basally by the pulsars, causing suppression of the smooth muscle membrane potential by approximately 8 mV. As well as KC\textsubscript{a}3.1-channels, InsP\textsubscript{3}-sensitive Ca2+ stores are also concentrated in the ECPs,17,42 and ACh stimulates an approximate 2.5-fold increase in pulsar frequency. Despite being able to resolve the Ca2+ changes within the ECPs, it has not been possible to resolve any subtle difference between the Ca2+ events activated by ACh under resting conditions compared with those in the presence of
phenylephrine tone. Indeed, under both conditions a clear rise in \(\text{Ca}^{2+} \) is observed in the head of the ECP,\(^{11} \) which is consistent with expression of M\(_i\) muscarinic ACh receptors within this microdomain.\(^{45} \) Therefore this does not appear to be the explanation for the differential activation of K\(_{\text{Ca}}\),2.3-and K\(_{\text{Ca}}\),3.1-channels. However, changes in extracellular Ca\(^{2+}\) do affect changes in the activity of K\(_{\text{Ca}}\),3.1-channels, indicating quite clearly that the ECP microdomain and the input to EDH and thus vasodilation is subject to dynamic modulation by the immediate intra- and extracellular environment in a complex fashion.

Interaction Between K\(_{\text{Ca}}\),3.1-Channels and Calcium: A Role for Ca-Sensing Receptors?

Input to EDH(F) dilation from EC K\(_{\text{Ca}}\),3.1-channels is influenced dramatically by small, physiological changes in extracellular [Ca\(^{2+}\)].\(^{11,44} \) Similar concentration changes act on the calcium-sensing receptors (CaSRs), recently found in the endothelium and linked both activation of K\(_{\text{Ca}}\),3.1-channels\(^{35} \) and vascular relaxation.\(^ {46} \) As [Ca\(^{2+}\)]\(_i\) increases above 1 mmol/L, K\(_{\text{Ca}}\),3.1-channel mediated hyperpolarization is suppressed, but reappears during Ca\(^{2+}\) influx into the adjacent smooth muscle during contraction.\(^ {11} \) Therefore, dynamic fluctuations in external [Ca\(^{2+}\)] around ECPs represent a fundamental physiological control mechanism. Relative to the intracellular space, diffusion is restricted and buffering of low capacity, so large fluctuations in [Ca\(^{2+}\)]\(_i\) will occur.

CaSRs have been reported in a number of blood vessels, and from a range of species, including humans.\(^ {27} \) On the endothelium, the link between activation of the CaSR and K\(_{\text{Ca}}\),3.1-channels is disrupted in mesenteric arteries from a model of type II diabetes, possibly reflecting decreased expression of CaSRs, although K\(_{\text{Ca}}\),3.1-channel protein, but not hyperpolarization, was also reduced.\(^ {48} \) The CaSR and K\(_{\text{Ca}}\),3.1-channel are colocalized in caveolin-poor regions of the EC membrane in those arteries.\(^ {45} \) K\(_{\text{Ca}}\),2.3-channels localize within the caveolae so abundant in ECs and, inter alia, act as signaling platforms. Knockout of the key structural protein caveolin-1 appears to ablate EDHF-mediated relaxation by disrupting Ca\(^{2+}\)-signaling involving TRPV4 and thus reducing connexin expression,\(^ {49} \) whereas TRPV4-deficient mice also lose EDHF relaxation, have reduced NO-relaxation and decreased blood pressure reduction to systemic ACh.\(^ {50} \)

Conducted Hyperpolarization

Whether initiated in the endothelium or smooth muscle, in many small arteries and arterioles local hyperpolarization can also spread axially to affect spreading vasodilation, translating a focal dilatation to a more widespread drop in vascular resistance necessary to increase blood flow. A fundamental defining feature of this spreading dilatation is that it has not been observed following focal dilatation to NO.\(^ {20,51,52} \) which was thought not to evoke hyperpolarization, and the EDH(F) pathway leading to spreading dilatation is independent of NO release.\(^ {53} \) Indeed, there appears to be a correlation between agonists that open K-channels and an ability to reliably evoke spreading dilatation.\(^ {54} \)

Such spread of dilatation is extremely important physiologically. For agonists to achieve a significant improvement in tissue blood flow, any increase in diameter must significantly reduce vascular resistance. If dilatation only occurred focally, it would be unlikely to reduce resistance, as it is partly determined by the length of the artery. However, if dilatation can also spread upstream, blood flow is much more likely to significantly increase. Such an effect has been measured in response to ACh, but not NO, within the microcirculation in situ.\(^ {55,56} \) and demonstrates the physiological importance of spreading dilatation. This phenomenon can also be observed in isolated, pressurized arteries.\(^ {51} \)

The signal for spreading dilatation is thought to simply reflect the passage of current to adjacent cells not directly stimulated by the agonist.\(^ {15,57} \) This can occur bidirectionally along the length of the vessel, and is intrinsic to the wall of the artery, relies on the endothelium, and is not dependent on either nerves or blood flow change.\(^ {15,54,58-61} \) The phenomenon is well-characterized within the microcirculation, where studies in exteriorized vascular beds in situ,\(^ {29} \) and arterioles isolated from those vascular beds, have used the endothelium-dependent agonist ACh to evoke robust responses when applied to the outside of arterioles with micropipettes. Spreading dilatation can also be sustained in small resistance arteries, such as the rat mesenteric artery, which have 3–5 layers of muscle, illustrating its relevance across the vasculature.\(^ {51,62,63} \)

Importance of the Endothelium in Spreading Dilatation

By activating ATP-sensitive K\(^+\) (K\(_{\text{ATP}}\)) channels, which are restricted to the smooth muscle in rat mesenteric arteries,\(^ {62,64} \) it has been demonstrated that the SMCs are not coupled sufficiently to allow spreading dilatation over long distances,\(^ {62} \) emphasizing the importance of the endothelium as the conduit for electrical coupling.\(^ {28,51,65} \) This research suggests that the mechanism leading to hyperpolarization is not crucial in determining spreading, only in initiating cell–cell coupling. However, some agonists may stimulate additional signaling pathways that can either augment (eg, by cAMP)\(^ {67} \) or reduce (eg, by \(\alpha_1\)-adrenoceptor stimulation; PKC)\(^ {68,69} \) the ability of hyperpolarization to spread between cells.

Spreading Dilatation Following Luminal Perfusion of Agonists

Circulating vasoactive agonists are crucially involved in the physiological control of regional blood flow, yet remarkably, few studies apply these agonists to the artery lumen when studying the mechanisms by which this integrative effect is achieved. Such an approach is of special importance when delineating the mechanism of action of agonists that have opposing actions via the endothelium and on the SMCs, as with purinergic (eg, ATP) and adrenergic (eg, adrenaline) agonists. Using a novel approach of cannulating arteries with either nerves or blood flow change.\(^ {20,51,52} \) which was thought not to evoke hyperpolarization, and the EDH(F) pathway leading to spreading dilatation is independent of NO release.\(^ {53} \) Indeed, there appears to be a correlation between agonists that open K-channels and an ability to reliably evoke spreading dilatation.\(^ {54} \)

Such spread of dilatation is extremely important physiologically. For agonists to achieve a significant improvement in tissue blood flow, any increase in diameter must significantly reduce vascular resistance. If dilatation only occurred focally, it would be unlikely to reduce resistance, as it is partly determined by the length of the artery. However, if
hyperpolarization, any agonist able to stimulate hyperpolarization will potentially evoke spreading dilatation, and will rely on homo- and heterocellular gap junctions to enable the necessary current spread. Of major interest is whether current passing between cells of the arterial wall decays passively, or some sort of amplification mechanism exists, and of course whether this mechanism is the same in all vessels. The available evidence in isolated, pressurized arteries supports a role for an as yet not fully defined amplification process, enabling current to spread further than predicted by passive decay. This has been elegantly demonstrated in cannulated hamster retractor small arteries (1–2 layers of smooth muscle), where the decay of injected current was faster than the decay of hyperpolarization to ACh, despite similar local hyperpolarization (length constants 1.2 and 1.9 mm, respectively).60 Therefore, the intercellular spread of current via gap junctions appears to be sustained by an undefined mechanism. Candidate ion channels involved in this process currently favor an important role for inwardly rectifying K+ (Kir) channels.65,70,71 However, this does not appear to be universal, as Ba2+ alone (to inhibit Kir channels) has no effect on spreading dilatation to either ACh or levomethadonium in rat mesenteric arteries,62 but the Na+/K+-ATPase, which we know can also be activated by modest increases in extracellular [K+]3 may play an as yet to be determined role. This raises the possibility that the release of K+ from vascular cells during hyperpolarization may act as an amplification mechanism, with a distinct parallel to its action as an EDHF.5 This is supported by the expression of both Kir channels and KCa2.3 channels at the borders of ECs,11 at sites resembling those of interendothelial cell gap junctions.65,72 It is also highly likely that an isoform of the ATPase is also expressed within this space. Thus, release of K+ through any of these channels could act on adjacent channels, pumps and/or cells to amplify hyperpolarization.

In addition, there are other candidates that may act together with or in parallel to K+, Given its central importance in vascular function, NO could play a role,73,74 although inhibition of NO synthase does not appear to reduce spreading dilatation.51,53,75 It has been previously shown that EC Ca2+ does not detectably increase in response to local24,76 or spreading62 hyperpolarization in either rat mesenteric or cremaster arteries. However, recent evidence shows that the presence of tone can unmask a detectable, slow, conducted intercellular Ca2+ wave, both in vitro74 and in vivo,77 although it is important to note that this wave is not a requirement for the rapid spread of hyperpolarization and associated dilatation.52,77

Conclusions

EDH is a fundamental physiological control mechanism. It is now clear that a continual, basal EDH provides a significant and physiologically relevant suppression of blood pressure that is independent of both NO and prostacyclin (PGI2). This, together with the fact that endothelial dysfunction, including changes in basal and evoked EDH, is a fundamental feature of cardiovascular disease,20,21,78 highlights the importance of this discovery and the need to define how and to what extent the EC microdomains of ion channels and pumps can modulate the elaboration of hyperpolarization and its ability to evoke vasodilatation.

Acknowledgments

The author thanks Professor Christopher Garland for his assistance with this review. Work from our group is supported by the British Heart Foundation and the Wellcome Trust (UK) Project and Programme Grants.

Disclosure

The author is a British Heart Foundation Senior Basic Science Research Fellow.

References

