Mechanism of Regular Atrial Tachyarrhythmias During Combined Pulmonary Vein Isolation and Complex Fractionated Electrogram Ablation in Patients With Atrial Fibrillation

Gi-Byoung Nam, MD; Eun-Sun Jin, MD; HyungOh Choi, MD; Hae-Geun Song, MD; Sung-Hwan Kim, MD; Ki-Hun Kim, MD; Eui-Seock Hwang, MD; Kyoung-Min Park, MD*; Jun Kim, MD**; Kyoung-Suk Rhee, MD†; Kee-Joon Choi, MD; You-Ho Kim, MD

Background: Atrial tachyarrhythmias (ATA) frequently develop during catheter ablation of atrial fibrillation (AF), but the mechanism of ATA during combined pulmonary vein isolation (PVI) and complex fractionated electrogram-guided ablation (CFEA) has not been reported.

Methods and Results: This study involved 105 patients with symptomatic, drug-refractory AF. After PVI, CFEA was performed in the left/right atrium if AF remained inducible in paroxysmal AF (PAF) AF or persisted in persistent AF (PeAF). For the 70 PAF patients, PVI alone rendered AF non-inducible in 29 patients (41.4%), and converted inducible AF into inducible atrial flutter (AFl) in 10 patients (14.3%). For the remaining 31 PAF patients, additional CFEA rendered AF non-inducible in 11 patients (15.7%), whereas only AFl was inducible in 11 patients (15.7%). For 35 PeAF patients, PVI and CFEA converted AF into sinus rhythm in 2 (5.7%) and into AFl in 21 (60.0%) patients, while AF persisted in 12 patients (34.3%). The mechanism of ATA was focal (20/114, 17.5%), roof-dependent (20/114, 17.5%), peri-mitral (33/114, 28.9%), cavotricuspid isthmus-dependent (34/114, 29.8%) AFl or unknown (7/114, 6.1%). Successful ablation was achieved in 93/114 (81.6%) tachycardias.

Conclusions: The major mechanism of ATA during the combined approach of PVI and CFEA is macroreentry around large anatomic obstacles such as the pulmonary vein or the mitral or tricuspid annuli. (Circ J 2010; 74: 434 – 441)

Key Words: Atrial fibrillation; Atrial flutter; Catheter ablation; Heart atria; Tachycardia
Electrophysiology Study

After discontinuation of all antiarrhythmic agents for at least 5 half-lives, an electrophysiological study was performed in the fasting state, typically under sedation with a continuous infusion of propofol (200–600 mg/h). Patients taking amiodarone were instructed to discontinue medication 1 month prior to the procedure. A 6F quadripolar catheter and a 7F decapolar catheter were introduced percutaneously through the femoral and jugular veins and placed in the His-bundle region and coronary sinus (CS) regions, respectively. Two 8F sheaths (SL1, St Jude Medical, Inc) were introduced into the left atrium (LA) using a modified Brockenbrough technique. After transseptal puncture, intravenous heparin was injected as a bolus (80 IU/kg) and intermittently (1,000–2,000 IU/h) to maintain an activated clotting time >250 s. In addition, heparinized saline was continuously infused through the transseptal sheath (3 ml/min) to avoid formation of thrombi or air emboli. The infusion rate was increased to 17 ml/min (≤30 W) or 30 ml/min (>30 W) during radiofrequency (RF) application.

Multiple ECG leads (leads I, aVF and V1, filtered between 0.05 and 100Hz) and intracardiac bipolar electrograms (filtered between 30 and 500Hz) were simultaneously displayed and recorded on a digital electrophyslogic recording system (CardioLab®, Prucka Eng., Houston, TX, USA). The stimuli were delivered using a programmable digital stimulator (DTU-215, Bloom & Associates, Reading, PA, USA) at twice the diastolic threshold and with a 2-ms pulse width for conventional pacing, and at 10–20 mA for high output pacing. Conventional fluoroscopic mapping was used in 65 patients, and 3-dimensional (3D) mapping in 40 patients (NavX, ver 6.0 or 7.0, St Jude Medical, n=36 or Carto system, Biosense-Webster, n=4).

Circumferential PVI

PVI was performed 5–10 mm outside the PV ostia, with isolation of 2 ipsilateral veins in 1 circumferential lesion. Ablation in the LA was performed using an irrigated catheter with a target temperature of 50°C, maximal power of 30 W, and an infusion rate of 17 ml/min. Power was temporarily increased to 40 W in an anterior circumference resistant to RF application. The endpoint of PVI was elimination or dissociation of the PV potentials (PVP). An ostial or carinal touch-up was additionally performed if PVP remained after PVI without an obvious gap along the line. Ablation at the PV ostia and within the CS was performed at 15–25 W and 50°C. Energy was applied for 40–60 s at each point until the loss of antral potential or the sharp component of the bipolar electrogram.

Study Protocol and CFEA

In patients with PAF, AF was induced before the procedure using a 5-s burst pacing from the distal and proximal CS and the right atrial electrodes. Pacing was begun at a cycle length (CL) of 250 ms and the CL was reduced in 10-ms intervals until atrial refractoriness or a CL of 200 ms was reached. Inducibility was defined as induction of AF lasting ≥2 min.

After completion of PVI, LA ablation targeting CFE was commenced by searching for the CFE from the posterior wall, the roof and the septum followed by the mitral annulus and base of the LA appendage (LAA). CFE was defined visually as a highly fractionated, nearly continuous electrogram. AF was re-induced if it terminated during the procedure, and abnormal electrograms were examined again if the re-induced AF lasted ≥2 min. If AF persisted or remained inducible after LA lesions, RF application was continued inside the CS and in the right atrium (RA), especially at the cavotricuspid isthmus, superior vena cava, crista terminalis, and the RA septum. The procedure endpoint was non-inducibility.

In patients with PeAF, CFEA was continued after PVI until AF termination, and the procedure endpoint was termination to sinus rhythm. In the last 3 patients with PeAF, a NavX-automated CFE detection algorithm was used. Automated CFE maps were created based on CFE CLs in an 8-s window, P-P sensitivity of 0.1 mV, width slider of 24 ms and refractory period of 49 ms.

Management of Regular Tachycardias

If a regular atrial tachycardia was induced or converted from AF during CFEA, activation mapping and multiple entrain-
Focal or isthmus ablation was performed accord-

ally to eliminate the tachycardia. Atrial tachycardias that could not be easily mapped and localized or were resistant to RF applications were cardioverted. Also, AF persistent after PVI and CFEA was electrically cardioverted at the end of the procedure.

Reentrant peri-mitral atrial flutter (AFl) was defined as regular atrial tachycardia with matching PPI (PPI-TCL <20 ms) in at least 2 peri-mitral regions. Roof-dependent AFl was diagnosed when PPI matched TCL in the posterior wall and in the roof or anterior wall. When the entrainment mapping results were not compatible with the above reentrant AFl, and the activation sequence showed a centrifugal propagation from a limited area of atrium, focal ablation targeting the earliest activation was performed. A focal mechanism in our study was confirmed using the following criteria: (1) failure to meet the entrainment result in >2 atrial regions, (2) centrifugal propagation of activation, and (3) termination by focal ablation. However, the term “focal” does not differentiate between true focal automatic tachycardia and focal micro-reentry.

Table 2. Distribution of Fractionated Atrial Electrograms Targeted for Ablation and Sites of AF Termination

<table>
<thead>
<tr>
<th></th>
<th>Paroxysmal AF (n=31)</th>
<th>Persistent AF (n=35)</th>
<th>Termination of AF into sinus rhythm or flutter (in PeAF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>13</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Septum, left</td>
<td>13</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Mitral annulus</td>
<td>17</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>LAA base</td>
<td>11</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Posterior wall</td>
<td>1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Anterior wall</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>CS os</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>CS inside</td>
<td>7</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Crista terminalis</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Septum, right</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>RAA base</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SVC isolation</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Tricuspid annulus</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>159</td>
<td>23</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>3.4±2.2</td>
<td>4.5±1.8</td>
<td></td>
</tr>
</tbody>
</table>

AF, atrial fibrillation; PeAF, persistent AF; LAA, left atrial appendage; CS, coronary sinus; RAA, right atrial appendage; SVC, superior vena cava.

Figure 1. Results of combined PVI and CFEA in patients with paroxysmal and persistent atrial fibrillation. AF, atrial fibrillation; AFI, atrial flutter; CFEA, continuous fractionated electrogram-guided ablation; PVI, pulmonary vein isolation.
Post-Ablation Care and Follow-up

Subcutaneous low-molecular-weight heparin and warfarin were administered for 3 days commencing on the evening of the procedure day. Warfarin was continued for >3 months and ceased if the patient did not have risk factors for thromboembolism. Anti-arrhythmic drugs were continued for 1–3 months in patients with a history of PeAF and were re-initiated if symptomatic AF recurred in patients with PAF.

Patients were seen in the outpatient clinic at 1-month intervals for the first 3 months, and then every 2–3 months thereafter. ECGs were checked on each visit and, if indicated, a Holter or event recording was used for detection of recurrent AF.

All patients were advised to visit outpatient clinics or emergency rooms for symptomatic episodes of palpitations, and in cases of persistent arrhythmia episodes, to obtain ECG documentation of the underlying rhythm. The absence of AF and AFI was confirmed in all asymptomatic patients with serial ECGs and/or 24-h Holter recordings. A successful outcome over the follow-up period was defined as the lack of electrocardiographically recorded AF, and no PAF on Holter or event recording, and subjective symptomatic improvement.
after a 3-month blanking period.11,12

Data Analysis

Data are expressed as mean±SD. Student’s t-test was used for statistical comparison. A P-value <0.05 was considered to indicate significant difference.

Results

Results of RF Ablation

For the 70 PAF patients, PVI alone rendered AF non-inducible in 29 (41.4%), and only AFI were inducible in 10 (14.3%) patients. For the remaining 31 (44.3%) PAF patients, additional CFEA rendered inducible AF non-inducible in 11 (15.7%) patients, and converted it into AFI in 11 (15.7%) patients. AF persisted in 9 (12.9%) patients after the combined ablation procedure.

For the 35 PeAF patients, PVI alone failed to terminate AF into sinus rhythm in any patient. Additional CFEA resulted in AF being terminated into sinus rhythm in 2 of 35 (5.7%) patients, and into AFI in 21 of 35 (60.0%) patients. The additional CFEA had no effect in 12 (34.3%) PeAF patients (Figure 1).

The duration of RF application for PVI were 3,855±1,515 s for PAF and 3,978±1,807 s for PeAF. Although the mean duration of RF application during CFEA appeared to be longer in patients with PeAF (1,032±590 vs 1,549±753 s), this difference did not quite reach statistical significance (P=0.06).

Distribution of Fractionated Electrograms and Results of CFEA

Fractionated electrograms were more commonly associated with specific LA regions such as the roof, septum, lateral mitral annulus, and base of the LAA. Table 2 summarizes the distribution of the CFE areas targeted for CFEA. The mean number of atrial regions targeted for CFEA was higher in patients with PeAF than in patients with PAF (3±2 vs 5±2 regions, P<0.05). Most of the RF lesions targeting CFE were delivered in a circumscribed area, creating a coin lesion. If CFE electrograms were distributed in a large area, especially in the posterior wall, roof or septum, a linear lesion was made across the CFE area.

Post-PVI CFEA rendered inducible AF either into inducible AFI or non-inducible in patients with PAF. PeAF terminated directly to sinus rhythm in 2 patients and converted into AFI in 21 patients (Figures 2, 3). Conversion occurred during CFEA at the LAA, CS inside, roof, septum or mitral annulus etc (Table 2).
Atrial Flutter in AF Ablation

A total of 114 atrial tachycardias or flutters were observed during combined PVI and CFEA procedures (60 in PAF, 54 in PeAF patients). The tachycardia mechanisms were focal (20/114, 17.5%), roof-dependent (20/114, 17.5%), peri-mitral (33/114, 28.9%), cavotricuspid isthmus-dependent (34/114, 29.8%), or unknown (7/114, 6.1%). The major mechanism of tachycardia was macroreentry around large anatomic obstacles such as the PV and mitral or tricuspid annuli (87/114, 76.3%). Focal mechanism was responsible in 18.3% (11/60) of tachycardias in PAF patients and in 16.7% (9/54) of tachycardias in PeAF patients. The mechanism of some tachycardias was difficult to identify because of the coexistence of multiple tachycardias, inconsistent entrainment results, and frequent termination or transition to other tachycardia during entrainment pacing. Table 3 summarizes the tachycardia mechanisms and results of catheter ablation. Successful ablation was achieved in 93/114 cases (81.6%) (Table 3).

Table 3. Mechanisms of Atrial Tachycardia During or After PVI and CFEA

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Paroxysmal AF (total number/successful ablation)</th>
<th>Persistent AF (total number/successful ablation)</th>
<th>Success rate (total number/successful ablation, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal</td>
<td>11 (11)</td>
<td>9 (8)</td>
<td>20 (19, 95.0%)</td>
</tr>
<tr>
<td>Peri-mitral</td>
<td>16 (11)</td>
<td>17 (14)</td>
<td>33 (25, 75.8%)</td>
</tr>
<tr>
<td>Roof-dependent</td>
<td>11 (10)</td>
<td>9 (7)</td>
<td>20 (17, 85.0%)</td>
</tr>
<tr>
<td>Right isthmus</td>
<td>20 (20)</td>
<td>14 (12)</td>
<td>34 (32, 94.1%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (0)</td>
<td>5 (0)</td>
<td>7 (0, 0%)</td>
</tr>
<tr>
<td>Total</td>
<td>60 (52)</td>
<td>54 (41)</td>
<td>114 (93, 81.6%)</td>
</tr>
</tbody>
</table>

PVI, circumferential pulmonary vein isolation; CFEA, continuous fractionated electrogram-guided ablation; AF, atrial fibrillation.

Clinical Results and Complications

Complications comprised transient ischemic attack in 1, pericardial effusion requiring drainage in 2, and groin hematoma in 2 patients.

The 70 PAF patients had a mean follow-up of 17±10 months. Recurrent tachyarrhythmias occurred in 11 patients, comprising persistent AFl (3 patients), PAF (7 patients), and AV nodal reentry tachycardia (AVNRT: 1 patient). Repeat procedures were performed in 1 AVNRT, 3 AFl and in 4 PAF patients. Atrial arrhythmias did not recur after this second procedure in 6/7 patients. One patient experienced recurrent episodes of PAF after the second procedure and 3 patients refused to undergo a redo ablation: 3 of these 4 patients were managed with intermittent (1 patient) or regular (2 patients) medication with class IC antiarrhythmic agents. In 1 patient, AF became persistent, and a rate control strategy was used.
The 35 PeAF patients had a mean follow-up of 20±9 months: 18 patients developed persistent AFl (5 patients) or PeAF (13 patients) and of those, 5 AFI patients and 7 AF patients underwent repeat procedures. The remaining 6 AF patients refused to undergo a second procedure. All the 5 AFI patients and 2 of the 7 PeAF patients regained sinus rhythm after the second procedure. In 2/7 patients who underwent redo procedures, and in 1/6 patients who did not receive redo procedure, previously ineffective class IC antiarrhythmic agents were effective for maintaining sinus rhythm. For 3 patients in whom AF recurred after the second procedure and 5 of the 6 patients who refused a repeat procedure, a rate control strategy was used. Overall, sinus rhythm was maintained without antiarrhythmic agents in 24 (69%) patients, and with previously ineffective antiarrhythmic drugs in 3 (9%) patients. AF persisted in the remaining 8 (23%) patients.

Discussion

The present study investigated the incidence and mechanism of regular ATA occurring during the combined approach of PVI and CFEA in catheter ablation of AF. We found that CFEA after PVI was able to render AF non-inducible in PAF patients or to convert AF to AFl in PeAF patients. The major mechanism underlying induced or converted AFls during this combined procedure was macroreentry around large anatomic obstacles such as the tricuspid/mitral annulus or PVs. This result suggests that it is possible to take a step-wise, patient-specific approach based on individual differences in the electrophysiological substrate of AF.

Efficacy of Post-PVI CFEA and Its Implication on the Mechanism of AF

The inducibility of AF by pacing is a major determinant of recurrence after PV isolation. The recurrence rate ranges from 30% to 50% when AF remains inducible, as compared to 10–20% when non-inducibility is achieved. In the present study, AF became non-inducible with PVI alone in 55.7% of PAF patients, and became non-inducible in a further 31.4% of patients after additional CFEA. In PeAF patients, PVI alone was not successful in terminating AF in any patient, whereas additional CFEA resulted in AF termination into sinus rhythm in 5.7% of patients or into AFl in 60.0% of patients. Therefore, while the long-term success of these CFEA outcomes remains unknown, CFEA resulted in greater achievement of the procedural endpoint.

The results of the CFEA provide 2 important mechanistic implications for the maintenance of AF. First, the fact that CFEA renders inducible AF non-inducible or into inducible AFI implies that the region targeted for CFEA could have played an active role in the perpetuation of AF. Second, the transition or termination of PeAF into AFl and subsequent CL coverage greater than 50% and mimicked reentrant tachycardia. An integrative analysis of activation and entrainment mapping results was necessary for differential diagnosis of these tachycardias.

Study Limitations

We did not systematically map all areas of fractionated electrograms before ablation, which might have precluded description of the global distribution of fractionated electrograms or their changes after ablation. A 3D mapping system-guided identification of CFE is currently underway in our laboratory to display the location and distribution of CFE areas. The data describe the immediate results of CFEA. To verify the true nature of this incremental change, a randomized study comparing the various strategies is required (ie, PVI alone vs CFEA alone vs PVI+CFEA).

Although the additive effect of CFEA is described, it remains unclear whether this resulted from abolition of AF drivers or from non-specific atrial damage and atrial mass reduction. In addition, not all of the areas with fractionated electrograms may represent true AF drivers. Future studies should obtain more data regarding the nature of electrograms at or near the AF drivers in order to reduce unnecessary RF application.

Finally, the clinical outcome was judged by documented ECGs or Holter recordings obtained intermittently during outpatient clinic follow-up or emergency room visits. A more comprehensive follow-up program, such as telephonic transmission or event recording, could have detected more cases of asymptomatic occurrence of AF in our study subjects and resulted in a lower success rate.
Conclusion

CFEA after PVI resulted in non-inducibility of AF or conversion of inducible AF into inducible AFl in patients with PAF. CFEA terminated AF into sinus rhythm or into AFl in patients with PeAF. The major mechanism of the induced or converted AFls during this combined procedure was macroreentry around large anatomical obstacles such as the tricuspid/mitral annulus or PVs.

Acknowledgments

This work was supported in part by grants from the Asan Institute for Life Science (2006-232) and the Korean Institute of Medicine.

We thank Jin-Yong Jung and Sung-Ho Moon for their technical assistance, and Jeong-Hae Kwon, RN, Ji-Hoi Yoon, RN and Ji-Hyun Kim, RN for their support with the preparation of this manuscript.

References