Sex-Related Differences in the Risk Factor Profile and Medications of Patients With Atrial Fibrillation Recruited in J-TRACE

Hiroshi Inoue, MD; Takashi Nozawa, MD; Tadakazu Hirai, MD; Shinya Goto, MD; Hideki Origasa, PhD; Kazuyuki Shimada, MD; Shinichiro Uchiyama, MD; Takayuki Hirabayashi, MD; Yukihiro Koretsune, MD; Shiro Ono, MD; Tooru Hasegawa, MD; Yasuo Sasagawa, MD; Yoshiaki Kaneko, MD; Yasuo Ikeda, MD for the J-TRACE Investigators

Background: Clinical characteristics, including risk factors for thromboembolism, and medications differ between men and women with atrial fibrillation (AF) in Western countries. Whether such a difference exists for Japanese patients with AF is unclear, so data from J-TRACE were used to investigate this issue.

Methods and Results: A total of 2,892 patients (2,028 men, 864 women; 70.3 years old) with AF were analyzed for the respective prevalences of risk factors and medications. CHADS2 score was calculated to determine thromboembolic risk level. Women were older (P<0.001), and more frequently had heart failure (P<0.001), and hypertension (P=0.051) than men. The proportion of subjects aged 75 years or older was higher among women than among men (P<0.001). CHADS2 score was therefore significantly higher in women than in men (2.05±1.29 vs 1.88±1.33, P<0.001). Sex-related differences were not observed for the prevalence of diabetes mellitus, myocardial infarction or ischemic stroke, nor did warfarin usage differ between men and women.

Conclusions: Sex-related differences were observed in the risk factor profile and medications of Japanese patients with AF. CHADS2 score was higher in women than in men. (Circ J 2010; 74: 650–654)

Key Words: Atrial fibrillation; CHADS2 score; Clinical characteristics; Medications; Sex differences

Atrial fibrillation (AF) is a common cardiac arrhythmia seen in general practice as well as in the cardiology clinic. The prevalence of AF differs between men and women in Western countries and also in Japan. Several studies have reported that there are sex-related differences in the clinical characteristics and medications of patients with AF. A prospective, cohort study indicated that the effects of AF on the risk of stroke were greater in women than in men after adjustment for age and comorbidity. Other studies also showed that AF is associated with an increase in cardiovascular events, including mortality and stroke, especially in women. Some risk stratification schemes consider women to be at high risk for ischemic stroke, while others do not. However, because the sex-related differences in risk factors for cardiovascular diseases and medications of Japanese patients with AF have yet to be clarified, registry data for a large, nation-wide, multicenter, cooperative study, J-TRACE (The Japan Thrombosis Registry for Atrial Fibrillation, Coronary or Cerebrovascular Events), were analyzed to address this issue in the present study.

Methods

The details of J-TRACE have been reported elsewhere. Briefly, J-TRACE has a steering committee of 5 members and 41 regional coordinators selected from 10 regions of Japan. Recruitment of patients to investigate risk factor profiles and current status of medications for risk factors and for prevention of cardiovascular events in patients with...
prior stroke, myocardial infarction (MI) or AF began in January 2005 and ceased in December 2006.

Study Population
Patients aged 20–90 years were eligible for enrollment if they had at least 1 of the 3 cardiovascular diseases (stroke, MI or AF). The study protocol was approved by an Institutional Review Board at each participating site and all patients gave informed consent. Those in the stroke and MI categories who also had AF, comprised the study subjects for this subanalysis of J-TRACE. Those in the recovery phase of acute MI or acute stroke were not eligible for enrollment in J-TRACE.

Baseline Characteristics
All subtypes of AF were included. AF was diagnosed electrocardiographically using standard diagnostic criteria. Risk factors and comorbidities were collected from the medical record as baseline data. Among them were hypertension, diabetes mellitus, hypercholesterolemia, valvular diseases, MI, ischemic stroke, congestive heart failure, smoking, and drinking. Regular use of medications, including anticoagulants, antiplatelet agents, and drugs for hypercholesterolemia, hypertension, and diabetes mellitus, was also determined from the medical record. Each patient’s CHADS2 score was calculated to determine the level of cardioembolic risk: 1 point was given for advanced age (≥75 years), hypertension, congestive heart failure, or diabetes mellitus, and 2 points for prior stroke or transient ischemic attack.

Statistical Analysis
Continuous variables are shown as the mean±SD, and categorical variables as percentages. Continuous variables were compared by analysis of variance or Student’s t-test, and categorical variables with the chi-square test, with P<0.05 considered significant.

Results

Risk Factor Profile
A total of 2,892 patients (2,028 men, 864 women; mean age, 70.3 years) with AF comprised the study group. Numbers of patients and their mean age in the 3 categories were as follows: AF category, 1,543 men (68.9±9.6 years old) and 699 women (72.4±8.5); stroke category, 399 men (70.6±8.4) and 141 women (73.0±8.3); MI category, 86 men (71.7±8.1) and 24 women (75.3±8.0). Their clinical characteristics are summarized in Table 1. Some of the characteristics exhibited differences by sex. Women were older (P<0.001), and more frequently had congestive heart failure (P<0.001), hypertension (P=0.051), valvular diseases or valve replacement (P<0.001), and hypercholesterolemia (P<0.001) than the men, but drank (P<0.001) and smoked (P<0.001) less frequently than men. The proportion of subjects aged 75 years or older was higher and body mass index was slightly but significantly lower in women than in men (P<0.001, each case). The prevalences of chronic AF, diabetes mellitus, MI, and ischemic stroke did not differ between men and women.

The CHADS2 score was slightly but significantly higher in women than in men (Table 1, P<0.001) because of their higher prevalence of older age (≥75 years), hypertension, and congestive heart failure. The distribution of CHADS2 scores differed significantly between men and women (Table 2, P<0.001). It increased with age for both men and women, but did not differ between men and women in any age group (Table 3).

Medications
Medications are summarized in Table 4. Use of warfarin and antiplatelet agents did not differ between men and women. Reflecting the differences in prevalence of hypertension and hypercholesterolemia between men and women, drugs for the treatment of these diseases were used more frequently in women than in men (P<0.001, each case). In contrast, use of antidiabetic drugs was similar in men and women.

There were no apparent sex-related differences in the rate of use of warfarin or aspirin at any CHADS2 score (Table 5).

Table 1. Clinical Characteristics of Japanese Patients With AF

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Men (n=2,028)</th>
<th>Women (n=864)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>65–74 years</td>
<td>69.4±9.4</td>
<td>72.6±8.5</td>
<td><0.001</td>
</tr>
<tr>
<td>≥75 years (%)</td>
<td>32.0</td>
<td>44.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Chronic AF (%)</td>
<td>68.8 (1,062/1,543)</td>
<td>66.1 (462/699)</td>
<td>0.199</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.8±3.2</td>
<td>23.4±4.1</td>
<td><0.001</td>
</tr>
<tr>
<td>CHF (%)</td>
<td>17.0</td>
<td>27.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>57.2</td>
<td>61.1</td>
<td>0.051</td>
</tr>
<tr>
<td>DM (%)</td>
<td>19.1</td>
<td>16.7</td>
<td>0.125</td>
</tr>
<tr>
<td>Ischemic stroke (%)</td>
<td>29.4</td>
<td>26.3</td>
<td>0.089</td>
</tr>
<tr>
<td>VHD (%)</td>
<td>10.1</td>
<td>21.1</td>
<td><0.001</td>
</tr>
<tr>
<td>MI (%)</td>
<td>7.6</td>
<td>5.9</td>
<td>0.096</td>
</tr>
<tr>
<td>HC (%)</td>
<td>25.1</td>
<td>35.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoker (%)</td>
<td>46.3</td>
<td>5.2</td>
<td><0.001</td>
</tr>
<tr>
<td>CHADS2 score</td>
<td>1.88±1.33</td>
<td>2.05±1.29</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are mean±SD or % of patients. *CHADS2 score was calculated to determine the level of cardioembolic risk: 1 point was given for advanced age (≥75 years), hypertension, congestive heart failure, or diabetes mellitus, and 2 points for prior stroke or transient ischemic attack.

Table 2. Distribution of CHADS2 Scores

<table>
<thead>
<tr>
<th>CHADS2 score</th>
<th>Men (n=385)</th>
<th>Women (n=864)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.9</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28.4</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23.5</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.2</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Figures are % of patients. P<0.001 between men and women.

Table 3. Age and CHADS2 Score

<table>
<thead>
<tr>
<th>Age</th>
<th>Men (n=326)</th>
<th>Women (n=326)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><65 years</td>
<td>1.24±1.12</td>
<td>1.57±1.14</td>
<td><0.001</td>
</tr>
<tr>
<td>65–74 years</td>
<td>1.63±1.22</td>
<td>1.57±1.4</td>
<td></td>
</tr>
<tr>
<td>≥75 years</td>
<td>2.74±1.17</td>
<td>2.72±1.12</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean±SD.
Warfarin usage differed significantly among CHADS2 scores in both men (P < 0.001) and women (P = 0.001). It increased gradually from approximately 60% to 80% as the score increased from 0 to 3 for both men and women; thereafter it reached a plateau, except in the case of women with a score of 6. Aspirin usage also differed significantly among CHADS2 scores in men (P = 0.008), but not in women (P = 0.852). It did not show any apparent score-dependent increase as observed in the case of warfarin usage.

Discussion

The major findings of the present study are as follows. First, there were sex-related differences in the risk factor profile and medications of patients with AF recruited in J-TRACE. Women were older and more frequently had hypertension, valvular diseases, congestive heart failure, and hypercholesterolemia than men. The prevalence of diabetes mellitus, ischemic stroke, and MI did not differ between men and women. Second, CHADS2 score was consequently slightly but significantly higher in women than in men with AF. This sex-related difference could be largely related to the higher proportion of women aged 75 years or older. Third, no sex-related differences in the use of warfarin or aspirin were observed at any CHADS2 score.

Risk Factor Profile of Patients With AF

Reports from Western countries suggest that sex-related differences could exist in the risk factors for cardiovascular diseases of patients with AF. In the present study, mean age was higher and the prevalence of hypertension also tended to be higher in women than in men, consistent with the previous reports; however, the prevalence of congestive heart failure was also higher in women than in men in the present study, a finding that is inconsistent with those reports from Western countries. Notably, the prevalence of diabetes mellitus and of a prior history of ischemic stroke were not consistent.

Cohort studies of the general population in Japan have indicated that the prevalences of hypertension and diabetes mellitus are higher in men than in women. The prevalence of cardiac diseases was not higher in women than in men with AF, so the higher prevalences of hypertension and congestive heart failure in women with AF found in the present study do not simply reflect the prevalence of these diseases in the general population of Japan. Valvular disease is a well-known risk factor for AF, especially for Japanese women. Drinking and smoking could promote the development of AF and were present more frequently in men than in women in the present study, as in the general population of Japan. The electrophysiological properties of the atria differ between men and women, so greater comorbidity and age might be required for AF to develop in women than in men.

Thromboembolic Risk

A sex difference in CHADS2 score was found in the present study, a finding consistent with the ATRIA study. In the Euro Heart Survey the score might have been higher in women than in men, because mean age and the prevalences of hypertension, diabetes mellitus, and prior ischemic stroke were significantly higher in women than in men. In some studies the levels of biomarkers of a prothrombotic state were higher in women with AF than in men with AF. These findings could explain the inclusion of female sex as a risk factor in some schemes for predicting thromboembolic events in patients with AF. In fact, among patients with acute stroke, embolic infarction is observed more frequently in women than in men. It is difficult to determine the reasons for the sex-related difference in thromboembolic risk; however, some components of the CHADS2 score were observed more frequently in women in the ATRIA study, Euro Heart Survey, and in the present study.

Medications

Registry studies in Western countries have indicated that warfarin usage does not differ between men and women. In the present study, the rate of warfarin usage did not differ between men and women as a whole nor did it differ between them at any CAHDS2 score (Table 5). Warfarin usage is at present not necessarily less frequent in women than in men, as reported in earlier registry and community-based cohort studies.

Use of aspirin and antidiabetic drugs was similar in men and women; however, drugs for hypertension and hypercholesterolemia were used more frequently by women than by men. The latter finding might reflect the sex-related differ-

Table 4. Medications at Baseline

<table>
<thead>
<tr>
<th>Medications</th>
<th>Men</th>
<th>Women</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>73.1</td>
<td>72.7</td>
<td>0.807</td>
</tr>
<tr>
<td>Antiplatelet agents</td>
<td>37.9</td>
<td>36.0</td>
<td>0.328</td>
</tr>
<tr>
<td>Aspirin</td>
<td>32.1</td>
<td>30.8</td>
<td>0.504</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>5.0</td>
<td>5.0</td>
<td>0.316</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>2.0</td>
<td>1.3</td>
<td>0.191</td>
</tr>
<tr>
<td>Antiplatelet agents</td>
<td>71.8</td>
<td>78.8</td>
<td><0.001</td>
</tr>
<tr>
<td>ACEI</td>
<td>17.4</td>
<td>14.8</td>
<td>0.087</td>
</tr>
<tr>
<td>ARB</td>
<td>28.4</td>
<td>32.2</td>
<td>0.039</td>
</tr>
<tr>
<td>β-blockers</td>
<td>21.4</td>
<td>21.3</td>
<td>0.927</td>
</tr>
<tr>
<td>Calcium antagonist</td>
<td>36.4</td>
<td>42.5</td>
<td>0.002</td>
</tr>
<tr>
<td>Diuretics</td>
<td>18.6</td>
<td>33.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Lipid-lowering drugs</td>
<td>16.7</td>
<td>26.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Statins</td>
<td>14.9</td>
<td>23.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Antidiabetic drugs</td>
<td>10.6</td>
<td>10.9</td>
<td>0.825</td>
</tr>
<tr>
<td>Oral</td>
<td>8.7</td>
<td>8.6</td>
<td>0.921</td>
</tr>
<tr>
<td>Insulin</td>
<td>1.4</td>
<td>2.2</td>
<td>0.111</td>
</tr>
</tbody>
</table>

Data are % of patients.

Only major drugs for treatment of comorbidities and prevention of thromboembolism are listed (see Uchiyama et al for more detailed information on medications in J-TRACE). ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin II receptor blockers.

Circulation Journal Vol.74, April 2010 INOUE H et al.
Sex Differences in AF

653

ences in the prevalence of these diseases in the present study.

Study Limitations

First, enrollment of consecutive patients with stroke, MI, and AF was recommended, but may not necessarily have occurred at each participating site and this possible selection bias could have affected the present results. Second, data for subjects with AF were collected from 3 categories of J-TRACE, possibly resulting in increased prevalences of ischemic stroke and MI. However, this might not necessarily have affected sex-related differences in the frequency of these diseases in the present study. Actually, when only patients of AF category were analyzed, the results did not differ in terms of sex-related differences in mean age, CHADS2 score, and prevalences of heart failure, hypertension, smoking, drinking habit and warfarin usage (data not shown). Third, the study design of the J-TRACE did not define the diagnostic criteria of comorbidities, including hypertension, hypercholesterolemia and others; however, data of comorbidities were collected from the medical record. If strict diagnostic criteria of comorbidities were used, the present results would not have changed greatly. Finally, the intensity of anticoagulation was not determined systematically, and follow-up data are not yet available.

Clinical Implications

Our findings indicate sex-related differences in the clinical risk factor profile of patients with AF, with the CHADS2 score slightly but significantly higher in women with AF than in men with AF in the clinical setting in Japan. Further follow-up studies are required to elucidate the effects of these sex-related differences on subsequent thromboembolic events.

Acknowledgment

This study was supported by the Japan Heart Foundation, Tokyo, Japan.

Disclosure

There is no conflict of interest to declare.

References

29. Appelros P, Stegmayr B, Terent A. Sex differences in stroke epi-

30. Sudlow M, Thomson R, Thwaites B, Rodgers H, Kenny RA. Preva-

Appendix 1

J-TRACE Steering Committee

Yasu o Ikeda, Keio University School of Medicine (Chair); Kazuyuki Shimada, Jichi Medical School; Shinichiro Uchiyama, Tokyo Women's Medical University; Shin'ya Goto, Tokai University School of Medicine; and Hideki Origasa, University of Toyama School of Medicine and Pharmaceutical Sciences

Secretariat

Hiroko Usami. BIOMEDIS INTERNATIONAL LTD

Regional Coordinators

Hokkaido Kiyohiro Houkin, Yoji Nagakawara, Kazuaki Shimamoto, Hiroyuki Tsutsui

Tohoku Kunio Shirato, Hiroaki Shimokawa, Akifumi Suzuki, Yasuo Terayama

Kanetsu Yoshifusa Aizawa, Akira Imai, Masahiko Kurabayashi, Ban Mihara, Yasuo Sasagawa

Chiba/Saitama Nobuo Araki, Toshio Fukutake, Issei Komuro, Fumitaka Ohsuz

Tokyo/Kanagawa Masakazu Asoaki, Kazuo Kimura, Norihiko Suzuki, Makoto Takagi, Shigeharu Takagi, Teruo Takano, Teruhisa Tanabe

Tokai Hano Hiroyama, Toyoaki Murohara, Takeshi Nakano, Gen Sobe

Kansai Masatsugu Hori, Yukihiro Koresut

Hokuriku Shinro Endo, Hiroshi Inoue, Kouji Kajinami

Chugoku/Shikoku Naohisa Hamashige, Shotaro Kobayashi, Masayasu Matsumoto, Masunori Matsuzaki

Kyushu Yoichi Hashimoto, Hisao Ogawa, Yasushi Okada, Shuichi Okamoto

Participating Investigators

Tohoku Morio Aihara, Mituaki Hatanaka, Yashiro Ishibashi, Hiroaki Kuki, Takahiko Kikuchi, Yuihi Nozaki, Ayumu Ohnuma, Yukio Onodera, Hiroaki Oosawa, Satozo Obara, Akifumi Suzuki, Nobuyuki Shiha, Hiroaki Takahashi, Kenichi Tamura, Hajime Yasuda

Chiba/Saitama Nobuo Araki, Toshio Fukutake, Kouchi Honma, Yoshihito Iijima, Shoichi Ito, Masatoshi Kusuhara, Yoichi Kuwabara, Yoshio Kobayashi, Kazutaka Matsui, Shinji Matsuda, Takeshi Nakazato, Kyotachi Nomura, Toshio Nagai, Fumitaka Ohzuma, Hideki Shige, Shigeki Tanaka, Kazuo Yamakawa

Kansai Ken Araki, Hideki Etoh, Ryuzu Fukunaga, Shigetaka Furukado, Hisakazu Fuji, Katsushi Hashimoto, Hirokiyoshi Hashimoto, Kinji Ishikawa, Kazuo Kitagawa, Yukihiro Koresutane, Akio Kohama, Yoshiyuki Kijima, Shinichiro Kume, Atsunori Nao, Yoshiyuki Nagai, Keiko Nagano, Osaka Police Hospital's Cardiology, Yutaka Okazaki, Masafumi Tagaya, Tsutomu Takahashi

Hokuriku Hironobu Akao, Shunro Endo, Nakaba Fujikoka, Akira Fujiki, Takadomi Hirai, Jun Harada, Hisanari Ishise, Hiroshi Inoue, Bunji Kaku, Michiya Kubo, Masanori Kyo, Kiyoo Mori, Koichi Mizumuki, Yutaka Nitta, Takashi Nonozaki, Makoto Nonomura, Ryoko Sato, Shuto Takashima, Yoshihiro Taketchi, Yoshiharu Taguchi, Kortaro Tanaka, Tsukasa Takabatake, Tomio Taguchi

Circulation Journal Vol.74, April 2010

INOUE H et al.