Over the past 2 decades, many research laboratories have investigated monocyte/macrophage biology in relation to atherosclerosis and its complications.1–3 Atherosclerotic lesions contain a large number of inflammatory cells such as lipid-laden macrophages and dendritic cells, both of which are derived from monocytes.1–3 Recently, the diversity and plasticity of monocyte-macrophage-dendritic cell lineages have received much attention. In 1988, Ziegler-Heitbrock et al reported a population of monocytes that coexpressed CD14 and CD16 antigens.4 To date, monocytes have been divided into phenotypically distinct subsets, namely Ly-6Chigh (Gr-1+) and Ly-6Clow (Gr-1−) monocytes in mice and classical (CD14highCD16−), intermediate (CD14+CD16+), and nonclassical (CD14dimCD16+) monocytes in humans. CCR, C-C motif chemokine receptor; CX3CR, C-X3-C motif chemokine receptor; MCP, monocyte chemotactic protein; IL, interleukin; TNF, tumor necrosis factor; RA, receptor antagonist.

Figure. Monocyte subsets in humans and mice. Monocytes have been divided into Ly-6Chigh (Gr-1+) and Ly-6Clow (Gr-1−) monocytes as subsets in mice and classical (CD14highCD16−), intermediate (CD14+CD16+), and nonclassical (CD14dimCD16+) monocytes in humans. CCR, C-C motif chemokine receptor; CX3CR, C-X3-C motif chemokine receptor; MCP, monocyte chemotactic protein; IL, interleukin; TNF, tumor necrosis factor; RA, receptor antagonist.

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Received August 16, 2012; accepted August 16, 2012; released online August 25, 2012

Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Mailing address: Kazunori Shimada, MD, Department of Cardiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. E-mail: shimakaz@juntendo.ac.jp.

All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
intermediate (CD14⁺CD16⁺), and nonclassical (CD14dimCD16⁺) monocytes in humans (Figure). The Ly-6C antigen is a glycosylphosphatidylinositol-anchored molecule expressed in monocytes, granulocytes, natural killer cells, and some dendritic cells. Ly-6Chigh monocytes adhere to the injured endothelium, migrate into the subendothelial space, and become macrophages in cholesterol-fed apolipoprotein E knockout mice. Because the phenotypes of Ly-6Chigh monocytes contain high levels of P-selectin glycoprotein ligand-1, they exhibit a high binding capacity to P-, E-, and L-selectin, as well as increased survival, continued proliferation, and impaired conversion from Ly-6Chigh to Ly-6Clow. In contrast, Ly-6Clow monocytes reside and exhibit a patrolling function in steady-state tissues, depending on CX3CR1 as a receptor of CX3CL1/fractalkine. These Ly-6Clow monocytes also have a reparative function because of their role in mediating healing after tissue injury.

The mechanism by which CD14⁺CD16⁺ monocyte counts are associated with the severity of coronary atherosclerosis and plaque instability remains unclear. Although it is known that CD14⁺CD16⁺ monocytes secrete high levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 after lipopolysaccharide stimulation, there are other unsolved issues. CD14⁺CD16⁺ monocytes produce not only inflammatory cytokines and chemokines such as IL-6, IL-8, and monocyte chemotactic protein-1, but also IL-10 as an anti-inflammatory cytokine. In addition, CD14⁺CD16⁺ monocytes produce IL-10. CD14⁺CD16⁺ monocytes also secrete IL-1 receptor antagonists as inhibitors of IL-1α and IL-1β activities (Figure). Moreover, flow cytometry analysis has demonstrated a continuous population, but not separate distribution, of each CD14⁺CD16⁺, CD14⁺CD16⁺, and CD14⁺CD16⁺ subset. These data suggest that each monocyte subgroup is both inflammatory and anti-inflammatory, and furthermore, they are a continuously growing population. Particular responses against different stimuli may be altered in each monocyte subset. A recent study demonstrated that CD14⁺CD16⁺CCR2⁺ monocytes in CD16⁺ populations have unique and functional characteristics, including cytokine production, in patients with AMI. In addition, a prospective study recently demonstrated that classical CD14⁺CD16⁺ monocytes, but not the CD16⁺ subset, predicted future cardiovascular events independently of conventional risk factors in the general population.

Atherosclerosis is an inflammatory and immune disease. The balance of M1/M2 macrophages and Th1/Th2 lymphocytes regulate and participate in the initiation and progression of atherosclerotic processes. The study by Ozaki et al. has raises a question about the delicate balance of monocyte subsets. The entire pathophysiology by which monocyte subgroups contribute to atherosclerosis and its complications remains unclear. A balance and dynamic equilibrium of monocyte subsets is possibly involved in all stages of the atherosclerotic process. The diversity and plasticity of monocyte/macrophage biology could be a promising target for future investigations aimed at decreasing the morbidity and mortality of patients with atherosclerotic diseases.

Acknowledgments This work was partially supported by the High Technology Research Center Grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan and a Grant-in-Aid for Scientific Research by the Japan Society for the Promotion of Science, Japan (C-23500620).

References