Extracorporeal Shock Wave Therapy Improves the Walking Ability of Patients With Peripheral Artery Disease and Intermittent Claudication

Fukashi Serizawa, MD; Kenta Ito, MD; Keiichiro Kawamura, MD; Ken Tsuchida, MD; Yo Hamada, MD; Tsutomu Zukeran, MD; Takuya Shimizu, MD; Daijiro Akamatsu, MD; Munetaka Hashimoto, MD; Hitoshi Goto, MD; Tetsuo Watanabe, MD; Akira Sato, MD; Hiroaki Shimokawa, MD; Susumu Satomi, MD

Background: Despite the recent advances in bypass surgery and catheter interventional therapy for peripheral artery disease (PAD), the long-term outcome of revascularization therapy for infrapopliteal lesions remains unsatisfactory. We have previously demonstrated that low-energy extracorporeal shock wave (SW) therapy effectively induces neovascularization through upregulation of angiogenic factors and improves myocardial ischemia in pigs and humans and in hindlimb ischemia in rabbits. In this study, we thus examined whether our SW therapy also improves the walking ability of patients with PAD and intermittent claudication.

Methods and Results: We treated 12 patients (19 limbs) in Fontaine II stage (males/females, 10/2; 60–86 years old) with low-energy SW therapy to their ischemic calf muscle 3 times/week for 3 consecutive weeks. After 24 weeks, the pain and distance subscale scores of the walking impairment questionnaire were significantly improved (33±25 vs. 64±26, 27±16 vs. 64±23, respectively, both P<0.01). Maximum walking distance was also significantly improved at 4 weeks (151±37% from baseline, P<0.01) and was maintained at 24 weeks (180±74% from baseline, P<0.01). Moreover, the recovery time of the tissue oxygenation index in the calf muscle during a treadmill test, which reflects local O2 supply, was significantly shortened (295±222 s vs. 146±137 s, P<0.01). Importantly, no adverse effects were noted.

Conclusions: Non-invasive SW therapy improves the walking ability of PAD patients. (Circ J 2012; 76: 1486–1493)

Key Words: Angiogenesis; Ischemia; Peripheral artery disease; Shock wave therapy

Peripheral artery disease (PAD) is caused by arterial stenosis and/or occlusion in the lower extremities, mainly because of atherosclerosis, and is associated with poor prognosis. The number of patients with PAD has been recently increasing worldwide. Reduced blood supply causes tissue ischemia and subsequent various symptoms depending on its severity, including intermittent claudication, limb coldness, rest pain, and tissue necrosis. These ischemic symptoms impair exercise capacity and quality of life, together with increased risk of cardiovascular disorders. Therapeutic strategies for PAD are several, including medication, exercise, bypass surgery, and catheter intervention. Although long-term outcomes of bypass surgery and endovascular intervention for ilio-femoral artery are acceptable, the long-term patency rate for infrapopliteal lesions remain low, which often requires repeated invasive procedures for these patients. New, non-invasive therapeutic strategies remain to be developed.

We have previously demonstrated that low-energy extracorporeal shock wave (SW) therapy effectively induces therapeutic angiogenesis and improves myocardial ischemia in pigs and humans, and in hindlimb ischemia in rabbits, through upregu-
Extracorporeal SW Therapy for PAD

Extracorporeal SW Therapy for PAD

Because of its non-invasive nature, our low-energy SW therapy is applicable for both patients with complicating disorders and elderly patients, and can be repeated if needed.

In the present study, we thus examined whether our low-energy SW therapy also improves the walking ability of PAD patients with intermittent claudication.

Methods

Patients

We enrolled PAD patients who were classified as Fontaine II. In the first trial (a pilot study), we treated 6 patients from September 2007 to July 2008. After modifying the treatment protocol based on the results of the pilot study, we then treated another 12 patients in the second trial from September 2008 to
May 2011. Exclusion criteria were as follows: absence of PAD (ankle-brachial pressure index [ABI] >0.90 at rest), asymptomatic PAD, unstable coronary artery disease, current smoking, inability to perform treadmill test, active cancer, and dementia. Smoking history was obtained from the patient’s self-report and non-smoking for more than 6 months was required to participate in the present study. Antiplatelet agents were administered for at least 1 year before enrolment and all antiplatelet agents were continued during the follow-up period. Both trials were approved by the ethical committees of Tohoku University, and written informed consent was given by each patient.

Low-Energy SW Therapy
Low-energy SW therapy was performed with a SW generator (Modulith® SLC, Storz Medical AG, Switzerland) (Figure 1). Based on our previous work, 1 SW session consisted of 200 shots in each of 40 sites on the ischemic calf muscle at 0.1 mJ/mm², approximately 10% of the energy level that is used for lithotripsy.5-17 If the patient felt discomfort in the legs during the SW therapy, the energy level was reduced to a tolerable level and then the energy level was gradually increased.

First Trial (Pilot Study)
We treated 6 limbs in 6 patients (5 males/1 female, 67–82 years old; all patients had arteriosclerosis obliterans) with the low-energy SW therapy 3 times/week for 3 consecutive weeks (days 1, 3, 5) and fifth weeks (days 29, 31, 33) (Figure 2).

Second Trial
Based on the results of the pilot study, we modified the treatment protocol. In the second trial, the low-energy SW therapy was performed 3 times/week for 3 consecutive weeks (Figure 2). We treated 19 limbs in another 12 PAD patients (10 males/2 females, 60–86 years old), comprising arteriosclerosis obliterans in 10, Buerger’s disease in 1 and polyarteritis nodosa in 1 (Table).

Evaluation of Walking Ability
Walking Impairment Questionnaire (WIQ) Subjective walking ability was evaluated in the second trial with a WIQ (Japanese version).18 The patients answered the WIQ before and 4, 8, 12 and 24 weeks after the SW therapy.

Table. Basic Characteristics of the Patients (Second Trial)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Sex</th>
<th>Primary disease</th>
<th>Site of lesion (CT findings)</th>
<th>Hypertension</th>
<th>Hyperlipidemia</th>
<th>Diabetes mellitus</th>
<th>Smoking history</th>
<th>Cilostazol</th>
<th>Sarpogrelate</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>M</td>
<td>PAD</td>
<td>F, IP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>PAD</td>
<td>F, IP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>BD</td>
<td>F, IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>M</td>
<td>F, IP</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>67</td>
<td>M</td>
<td>PAD</td>
<td>F, IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>PAD</td>
<td>F, IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>60</td>
<td>F</td>
<td>PN</td>
<td>I, IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>PAD</td>
<td>IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>PAD</td>
<td>F, IP</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>68</td>
<td>M</td>
<td>PAD</td>
<td>IP</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>84</td>
<td>M</td>
<td>PAD</td>
<td>F, IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

PAD, peripheral artery disease; Buerger, Buerger’s disease; PN, polyarteritis nodosa; I, iliac region (from aortic bifurcation to external iliac artery); F, femoral region (common/superficial/deep femoral artery); IP, infra-popliteal region.

Table. Basic Characteristics of the Patients (Second Trial)

Maximum Walking Distance
The treadmill test was performed under the condition of 2.4 km/h, 12% degrees in incline with treadmill device, and the maximum walking distance was measured (up to 400 m in 10 min). The maximum walking distance was evaluated before and 4, 8, and 12 weeks after the SW therapy in the first trial, and before and 4, 8, 12, and 24 weeks after the SW therapy in the second trial. Seven patients enrolled in the second trial had bilateral lesions and their maximum walking distance was measured in the more severely diseased leg.

Recovery Time of Tissue Oxygenation Index (TOI)
TOI was measured with near-infrared spectroscopy (NIRO-200®; Hamamatsu Photonics, Japan) during the treadmill test in the second trial before and 4, 8, 12 and 24 weeks after the SW therapy (Figure 3).

TOI = oxygencated hemoglobin (O₂Hb)/concentration of hemoglobin (cHb)

The near-infrared spectroscopy probes were attached to the calf muscle, and the recovery time of TOI, which reflects local O₂ supply, was obtained.

CT Angiography
CT angiography was performed to evaluate collateral vascular growth before and 12 weeks after the SW therapy in the first trial, and before and 24 weeks after the SW therapy in the second trial. The angiographic images were independently evaluated by 2 radiologists in a blinded manner.

Statistical Analysis
Statistical analyses were performed by unpaired t-test using StatMate 4. The results are expressed as means±standard deviations (SD). Differences were considered statistically significant at P<0.05.

Results
First Trial (Pilot Study)
There were no significant changes in ABI during the follow-up period in the first trial (data not shown). After the SW therapy, the maximum walking distance was significantly increased at 4 weeks (130±27% from baseline, P<0.05) and 8 weeks
(162±30% from baseline, P<0.05). However, the increased maximum walking distance was not sustained at 12 weeks in 3 of the 6 patients (146±63% from baseline, P=0.14). Thus, we modified the treatment protocol following our previous study of hindlimb ischemia in a rabbit model.11 No detectable change in collateral vessels was observed with CT angiography at 12 weeks after the SW therapy.

Second Trial

WIQ The pain and distance subscale scores were significantly increased at 8, 12 and 24 weeks (Figure 4). The stairs subscale score was increased only at 8 weeks and no significant change was observed in the speed subscale score (Figure 4).

ABI There were no significant changes in ABI during the follow-up period (baseline: 0.57±0.15, 4 weeks: 0.58±0.13, 8 weeks: 0.58±0.13, 12 weeks: 0.57±0.14, 24 weeks: 0.59±0.12, all P=NS).

Maximum Walking Distance After the SW therapy, the maximum walking distance was significantly increased at 4 weeks (151±37% from baseline, P<0.01), and was maintained at 8 weeks (161±56%, P<0.01), 12 weeks (171±75%, P<0.01) and 24 weeks (180±74%, P<0.01) (Figure 5). One patient

(Figure 3. Treadmill test and near-infrared spectroscopy. (A) Treadmill test in a patient with peripheral artery disease. (B) The tissue oxygenation index (TOI) decreased after starting exercise and recovered to the pre-exercise level after stopping exercise.)
failed to undergo the treadmill test at 4 weeks because of knee joint pain, and another patient at 24 weeks because of a respiratory disorder.

Recovery Time of TOI The recovery time of TOI was significantly shortened at 4, 8, 12 and 24 weeks compared with baseline (all P<0.01) (Figure 6).

CT Angiography No increase in visible collateral vessels was noted on the CT angiograms at 24 weeks after the SW therapy.

Discussion In the present study, the low-energy SW therapy significantly improved symptoms, walking ability and peripheral perfusion without any adverse effects in PAD patients with intermittent claudication. To our knowledge, this is the first report to demonstrate the beneficial effects of low-energy SW therapy for PAD patients.

Treatment Protocol In the first trial, although the maximum walking distance was increased at 4 weeks after the SW therapy, the beneficial effect was not sustained for a longer period. Thus, we modified the protocol by increasing the duration of the SW therapy in the second protocol, and we were able to confirm sustained beneficial effects of the therapy on the walking ability of PAD patients. In our previous studies, 1-week treatment (total 3 times) was enough for the treatment of myocardial ischemia in pigs and humans, whereas the 3-week treatment (total 9 times) was required for the treatment of hindlimb ischemia.
Extracorporeal SW Therapy for PAD

Although the mechanisms for the different optimal SW conditions between the heart and the legs remain unclear, it is conceivable that therapeutic angiogenesis may be more effectively induced in the heart than in the legs. Further studies are needed to address this point.

Effects of Low-Energy SW Therapy on Symptoms
In the second trial, the low-energy SW therapy significantly improved the pain and distance subscale scores of the WIQ, probably because of improved peripheral perfusion and local O$_2$ supply as evidenced by the improved recovery time of TOI. In contrast, the SW therapy did not sufficiently improve the speed or stairs subscale scores. Most PAD patients with intermittent claudication walk slowly and subconsciously avoid the use of stairs in their daily life, which could be one of the reasons why the SW therapy did not improve the speed and stairs subscale scores. Although cilostazol has also been reported to improve the WIQ scores, the beneficial effect of the SW therapy on the WIQ scores in the present study is superior to that of cilostazol.

Effects of the SW Therapy on Walking Ability
In the second trial, the SW therapy significantly improved the walking ability of PAD patients with intermittent claudication. This beneficial effect was associated with a significant reduction in the recovery time of TOI, reflecting improved calf

Figure 5. Maximum walking distance during the treadmill test in the second trial was significantly increased and was maintained for 24 weeks after the shock wave therapy.

Figure 6. Recovery time of tissue oxygenation index in the second trial was significantly shortened and the improvement was maintained for 24 weeks after the shock wave therapy.
Recent studies have shown that exercise rehabilitation can improve walking distance in patients with intermittent claudication. Despite the benefits of exercise rehabilitation, there are limitations to its effectiveness. For example, the maximum walking distance at 24 weeks was increased in all patients. However, in only 1 patient was the improvement greater than in a previous study in which some placebo treatment was noted. We and others have demonstrated in cultured human umbilical vein endothelial cells that low-energy SW therapy enhances NO production and expression of VEGF and its receptor, fms-related tyrosine kinase 1 (Flt-1), in vitro. The upregulation of VEGF and eNOS was involved in the SW-induced angiogenesis in vivo. In addition, it was reported that low-energy SW applied to bone-marrow-derived mononuclear cells enhances VEGF production from the cells and their differentiation into endothelial phenotype cells. Low-energy SW therapy was also reported to increase the expression of stromal-derived factor 1 in ischemic tissue, leading to enhanced recruitment of progenitor cells in a rat model of hindlimb ischemia. Taken together, these data suggest that the beneficial effects of low-energy SW therapy on the walking ability of PAD patients are attributed, at least in part, to enhancement of several intrinsic angiogenic pathways.

Conclusions

The present study demonstrates for the first time that our non-invasive low-energy SW therapy ameliorates the walking disability of PAD patients without any adverse effects. Further studies are needed to elucidate the detailed mechanisms of the beneficial effects of SW therapy.

Acknowledgments

This study was supported in part by the grants-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan (Grant-in-Aid for Scientific Research on Innovative Areas 201107009), the Japanese Ministry of Health, Labor, and Welfare, Tokyo, Japan (H21-rinsyokenkyu-ippan-012).

References

6. Ichihashi S, Higashiriwa W, Itoh H, Sakaguchi S, Nishimine K,

