Mechanisms for Enhanced Endothelium-Derived Hyperpolarizing Factor-Mediated Responses in Microvessels in Mice

Junko Ohashi, MD, PhD; Ayuko Sawada, BSc; Sota Nakajima, MD, PhD; Kazuki Noda, MD; Aya Takaki, PhD; Hiroaki Shimokawa, MD, PhD

Background: Endothelium-derived relaxing factors play an important role in cardiovascular homeostasis. Among them, endothelium-derived hyperpolarizing factor (EDHF) is important especially in microcirculation. It has previously been demonstrated that endothelium-derived hydrogen peroxide (H$_2$O$_2$) is an EDHF in animals and humans and that endothelial nitric oxide synthase (eNOS) plays diverse roles as a nitric oxide (NO) generating system in conduit arteries and as an EDHF/H$_2$O$_2$ generating system in microvessels. As compared with NO-mediated responses, those by EDHF are resistant to atherosclerosis, contributing to the maintenance of cardiovascular homeostasis. The aim of this study is to elucidate the molecular mechanisms for enhanced EDHF-mediated responses in microvessels.

Methods and Results: This study used male wild-type mice and caveolin-1-deficient mice (caveolin-1$^{-/-}$ mice). In the endothelium, eNOS was functionally suppressed in mesenteric arteries (microvessels) compared with the aorta (conduit arteries), for which Ca$^{2+}$/calmodulin-dependent protein kinase kinase β (CaMKKβ) and caveolin-1 are involved, as EDHF-mediated responses were inhibited by STO-609 (an inhibitor of CaMKKβ) and in caveolin-1$^{-/-}$ mice, respectively. In vascular smooth muscle, relaxation responses to H$_2$O$_2$ were enhanced through a protein kinase G1α (PKG1α)-mediated mechanism in mesenteric arteries compared with the aorta, as they were inhibited by Rp-8-Br-cGMPS (an inhibitor of PKG1α).

Conclusions: These results indicate that CaMKKβ, caveolin-1, and PKG1α are substantially involved in the mechanisms for the enhanced EDHF-mediated responses in microvessels in mice. (Circ J 2012; 76: 1768–1779)

Key Words: Endothelial nitric oxide synthase; Endothelium-derived hyperpolarizing factor; Microvessels; Nitric oxide
Mechanisms of Enhanced EDHF Responses in Microvessels

There are several intracellular sources of superoxide anions other than NOSs, including nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, xanthine oxidase, lipoxygenase, and the mitochondrial electron transport chain, but they are not involved in EDHF/H$_2$O$_2$ responses in mice. In vivo, we have elucidated that EDHF/H$_2$O$_2$ plays an important role in coronary microcirculation, including coronary autoregulation, cardiovascular protection against myocardial ischemia-perfusion injury and metabolic coronary vasodilatation in canine coronary microcirculation in vivo.

Although it has been demonstrated that EDHF-mediated responses are dominant in microvessels, the molecular mechanisms remain to be elucidated. It would provide important clues for the novel strategy for vascular protection to elucidate the molecular mechanisms involved for the enhanced EDHF-mediated responses in microvessels. In the present study, we thus addressed this important issue in mice.

Methods

Animal and Tissue Preparation

This study was reviewed and approved by the Committee on Ethics of Animal Experiments of the Tohoku University. Male C57BL/6 wild-type (WT) mice and caveolin-1-deficient (Cav-1$^{-/-}$) mice that were 12–16 weeks of age were used. Cav-1$^{-/-}$ mice were derived from breeding pairs of heterozygous (Cav-1$^{+/-}$) mice (Jackson Laboratory, Bar Harbor, ME, USA) and were maintained in the Laboratory of Animal Experiments in the Tohoku University. The Cav-1$^{-/-}$ mice were backcrossed to C57BL/6 mice over 10 generations and thus C57BL/6 mice
Ohashi J et al.

were used as a WT control. The animals were anesthetized with intraperitoneal pentobarbital (50 mg/kg) and the aorta and small mesenteric arteries (200–250 μm in diameter) were excised. To examine endothelium-independent responses, some arterial rings were stripped of the endothelium by gently rubbing the inner surface with cotton string. To extract protein for Western blot analysis, we isolated the aorta and mesenteric arteries from any connective tissues.

Organ Chamber Experiments

Experiments were performed in 37°C Krebs solution bubbled with 95% O2 and 5% CO2. Isometric tension was recorded in isolated arterial rings contracted with prostaglandin F2α (PGF2α) (3–10 μmol/L). The extent of the contraction was adjusted to 50–70% of the contractions induced by 60 mmol/L potassium chloride (KCl). Endothelium-dependent relaxations to acetylcholine (ACh) and endothelium-independent relaxations to sodium nitroprusside (SNP), NS-1619 [a direct opener of calcium-activated potassium (KCa) channels], or exogenous H2O2 were examined. The contributions of vasodilators PGI2, NO, and EDHF to ACh-induced endothelium-dependent relaxations were determined by the inhibitory effect of indomethacin (10 μmol/L), Nε-nitro-L-arginine (L-NNA, 100 μmol/L), and a combination of charybdoxotoxin (100 μmol/L, an inhibitor of large and intermediate-conductance KCa channels) and apamin (1 μmol/L, an inhibitor of small-conductance KCa channels), respectively. Indomethacin, L-NNA, charybdoxotoxin and apamin were applied to organ chambers 30 min before precontraction with PGF2α. To examine the relative contribution of endothelium-derived relaxing factors, the NO-mediated response was evaluated by the area under the response curve that was inhibited by L-NNA in the presence of indomethacin and EDHF-mediated response by the area under the response curve that was inhibited by a combination of charybdoxotoxin and apamin in the presence of indomethacin and L-NNA.

Additional experiments were performed using the following inhibitors: STO-609 [5 μmol/L, an inhibitor of Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)], compound C [10 μmol/L, an inhibitor of adenosine monophosphate-activated protein kinase (AMPK)], wortmannin [100 μmol/L, ...]

Figure 2. eNOS is functionally suppressed in mesenteric arteries in mice. (A) The extent of eNOS phosphorylation at Ser1177 was significantly suppressed and that at Thr495 was significantly greater in mesenteric arteries (MA) than in the aorta (Ao) (n=3 each). (B) Immunoblot with an anti-caveolin-1 antibody of the extracts immunoprecipitated with anti-eNOS antibody showed that the extent of eNOS coupled with caveolin-1 was significantly greater in MA than in Ao (n=3). *P<0.05. eNOS, endothelial nitric oxide synthase.
Figure 3. Involvement of CaMKKβ in EDHF-mediated relaxations. (A, B) Endothelium-dependent relaxations to ACh with or without preincubation with STO-609 (5 mmol/L, 60 min) in the aorta (Ao) and mesenteric arteries (MA) (n=6 each). STO-609 had no effects in the Ao but significantly inhibited EDHF-mediated responses in MA. (C) Quantitative analysis of the relative contribution of NO and EDHF to the endothelium-dependent relaxations to ACh with or without preincubation with STO-609 (5 mmol/L, 60 min) in the Ao and MA (n=6 each). STO-609 significantly inhibited EDHF-mediated relaxations and significantly enhanced NO-mediated relaxations in MA but had no effects in the Ao. (D) Endothelium-dependent hyperpolarizations to ACh of mesenteric arteries with or without preincubation with STO-609 (5 mmol/L, 60 min) (n=6 each). STO-609 significantly inhibited EDHF-mediated hyperpolarizations in MA but not in the Ao. (E) The extent of eNOS phosphorylation at Ser1177 was significantly enhanced in response to ACh in both MA and the Ao, which was inhibited by STO-609 (5 mmol/L, 60 min) in MA but not in the Ao (n=3 each). (F) The extent of eNOS phosphorylation at Thr495 was unchanged by STO-609 (5 mmol/L, 60 min) in MA or the Ao (n=3 each). *P<0.05, **P<0.01. CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; EDHF, endothelium-derived hyperpolarizing factor; ACh, acetylcholine; NO, nitric oxide.
an inhibitor of phosphatidylinositol-3-kinase (PI3K)29 and Rp-8-bromo-guanosine 3’,5’-monophosphothionate [Rp-8-Br-cGMPS, 200 μmol/L, an inhibitor of protein kinase G1α (PKG1α)].30 Compound C, wortmannin and Rp-8-Br-cGMPS were applied to organ chambers 30 min before precontraction with PGF\textsubscript{2α}, and STO-609 was applied 60 min before.

Electrophysiological Experiments

Electrophysiological experiments were performed with isolated small mesenteric arteries. The rings of small mesenteric arteries were placed in experimental chambers perfused with 37°C Krebs solution containing indomethacin (10 μmol/L) and L-NNA (100 μmol/L) bubbled with 95% O\textsubscript{2} and 5% CO\textsubscript{2}. A fine glass capillary microelectrode was impaled into the smooth muscle cell from the adventitial side of mesenteric arteries, and changes in membrane potentials produced by ACh (10 and 100 μmol/L) were continuously recorded.15,24

Western Blot Analysis

The extract protein from isolated aorta and mesenteric arteries was incubated in Krebs solution for 60 min (the aorta 20 μg, mesenteric arteries 10 μg) and was then loaded for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoblot analysis was performed using antibodies that specially recognize protein, including eNOS, Ser1177-phosphorylated or Thr495-phosphorylated eNOS, caveolin-1 and β-actin (internal control). Immunoprecipitation of the eNOS protein was performed using μMACSTM and Multi-MACSTM Protein G Kits (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany).31,32

Statistical Analysis

Data are shown as mean±SEM. A dose-response curve was analyzed by using a 2-way ANOVA followed by Scheffe’s post-hoc test for multiple comparisons. Other values were analyzed by paired and unpaired t-tests or a 1-way ANOVA. A P<0.05 was considered to be statistically significant.

Results

Relative Contribution of the Endothelium and Vascular Smooth Muscle to Enhanced EDHF-Mediated Responses in Microvessels

We first examined to what extent the endothelium and vascu-

\textbf{Figure 4.} No involvement of AMPK in EDHF-mediated relaxations (A, B). Endothelium-dependent relaxations to ACh with or without preincubation with compound C (10 mmol/L, 30 min) in the aorta (Ao) and mesenteric arteries (MA) (control n=6, compound C n=4). (C) Quantitative analysis of the relative contribution of NO and EDHF to the endothelium-dependent relaxations to ACh with or without preincubation with compound C (10 mmol/L, 30 min) in the Ao and MA (control n=6, compound C n=4). (D) Endothelium-dependent hyperpolarizations to ACh of mesenteric arteries with or without preincubation with compound C (10 mmol/L, 60 min) (n=6 each). Compound C had no effects on EDHF-mediated relaxations or hyperpolarizations to ACh in both-sized arteries. AMPK, adenosine monophosphate-activated protein kinase; EDHF, endothelium-derived hyperpolarizing factor; ACh, acetylcholine; NO, nitric oxide.
lar smooth muscle cells (VSMC) contribute to the enhanced EDHF-mediated responses in microvessels in WT mice. As we have repeatedly reported, endothelium-dependent relaxations of the aorta to ACh were markedly inhibited by L-NNA (a NOS inhibitor) in the presence of indomethacin (a PGI\(_2\) synthesis inhibitor), whereas the relaxation responses of mesenteric arteries to ACh were resistant to indomethacin, L-NNA or their combination, but were markedly inhibited by a combination of charybdotoxin (an inhibitor of large- and intermediate-conductance K\(_{\text{Ca}}\) channels) and apamin (an inhibitor of small-conductance K\(_{\text{Ca}}\) channels), indicating a primary role of EDHF (Figure 1A). These results confirmed our notion that NO and EDHF play an important role in endothelium-dependent relaxations in the conduit arteries (the aorta) and microvessels (mesenteric arteries), respectively.\(^7,22\)

We then examined to what extent VSMC are involved in the enhanced EDHF-mediated responses of microvessels to EDHF/H\(_2\)O\(_2\). Exogenous H\(_2\)O\(_2\) (10\(^{-10}\)-10\(^{-4}\) mol/L) caused concentration-dependent direct relaxations in rings without endothelium (in the presence of indomethacin and L-NNA), which were enhanced in mesenteric arteries as compared with the aorta (Figure 1B). In addition, the H\(_2\)O\(_2\)-mediated direct relaxations were markedly inhibited by TBA (a non-specific inhibitor of K\(_{\text{Ca}}\) channels), which was consistent with the definition of H\(_2\)O\(_2\) as an EDHF (Figure 1B).

When the EDHF-mediated component in endothelium-dependent relaxations (contribution of the endothelium) was normalized by exogenous H\(_2\)O\(_2\)-mediated relaxations (contribution of VSMC), it was evident that the role of the endothelium was greater in mesenteric arteries compared with the aorta (Figure 1C). This was also the case in mesenteric arteries/the aorta ratio of EDHF- and K\(_{\text{Ca}}\)-mediated responses (Figure 1D). These results indicate that both the endothelium and VSMC contribute to the enhanced EDHF-mediated relaxations; the endothelium to a greater extent than VSMC.

Endothelial Level (1): eNOS Is Functionally Suppressed in Mesenteric Arteries

Then, we examined the molecular mechanisms for the divergent roles of eNOS between the aorta and mesenteric arteries. We have previously demonstrated that eNOS is not pathologically uncoupled in mouse mesenteric arteries.\(^22\) We thus examined first whether eNOS activity is altered in mouse mesenteric arteries. Among the several phosphorylation sites

Figure 5. No involvement of PI3K in EDHF-mediated relaxations. (A,B) Endothelium-dependent relaxation to ACh with or without preincubation with wortmannin (100 nmol/L, 30 min) in the aorta (Ao) and mesenteric arteries (MA) (control n=6, wortmannin n=4). (C) Quantitative analysis of the relative contribution of NO and EDHF to the endothelium-dependent relaxations to ACh with or without preincubation with wortmannin (100 nmol/L, 30 min) in the Ao and MA (control n=6, wortmannin n=4). (D) Endothelium-dependent hyperpolarizations to ACh of mesenteric arteries with or without preincubation with wortmannin (100 nmol/L, 30 min) (control n=6, wortmannin n=4). Wortmannin had no effects on EDHF-mediated relaxations or hyperpolarizations to ACh in both-sized arteries. EDHF, endothelium-derived hyperpolarizing factor; ACh, acetylcholine; NO, nitric oxide.
of eNOS, it is well known that Ser1177 is an important stimulatory site and that Thr495 is an important inhibitory site in mice and humans. Western blotting experiments demonstrated that the extent of eNOS phosphorylation at Ser1177 was significantly reduced and that at Thr495 was significantly greater in mesenteric arteries than in the aorta (Figure 2A). Furthermore, immunoprecipitation experiments demonstrated that the extent of eNOS coupling with caveolin-1 was significantly greater in mesenteric arteries than in the aorta (Figure 2B). These results suggest that eNOS is functionally suppressed in mesenteric arteries compared with the aorta even under physiological conditions, at least in part, by the caveolin-1-dependent mechanism.

Endothelial Level (2): Role of CaMKKβ for Enhanced EDHF-Mediated Responses in Mesenteric Arteries

It has been demonstrated that multiple intracellular mechanisms are involved for eNOS activation, including CaMKKβ, AMPK, PI3K, Akt, and caveolin-1. Thus, we examined which mechanism is involved in the functional eNOS suppression in mouse mesenteric arteries. We first examined the inhibitory effects of STO-609, an inhibitor of CAMKKβ. Although STO-609 (5 μmol/L, 60 min) had no effects on contractions to KCl or endothelium-independent relaxations to SNP (Figures S1A–C), it significantly inhibited EDHF-mediated relaxations and hyperpolarizations to ACh and significantly enhanced NO-mediated relaxations to ACh in mesenteric arteries, whereas it had no effects in the aorta (Figures 3A–D). Consistent with the results of organ chamber experiments, the extent of eNOS phosphorylation at Ser1177 in response to ACh was significantly enhanced both in the aorta and mesenteric arteries, which was inhibited by STO-609 in mesenteric arteries more than in the aorta (Figure 3E). In contrast, the extent of eNOS phosphorylation at Thr495 was unchanged by STO-609 in both-sized arteries (Figure 3F). These results suggest the involvement of CaMKKβ in the enhanced EDHF-mediated responses in mouse mesenteric arteries through eNOS phosphorylation at Ser1177.
Endothelial Level (3): Role of AMPK for Enhanced EDHF-Mediated Responses in Mesenteric Arteries

We then examined the role of AMPK by using compound C, an inhibitor of AMPK.27,28 Compound C (10 μmol/L, 30 min) had no effects on EDHF-mediated relaxations or hyperpolarizations to ACh of the aorta or mesenteric arteries (Figures 4A–D), whereas it attenuated contractions of mesenteric arteries to KCl in a concentration-dependent manner (Figure S2A). Compound C had no effects on endothelium-independent relaxations to SNP or NS-1619, an opener of K\textsubscript{Ca} channels, in both-sized arteries (Figures S2B–C). These results suggest no involvement of AMPK in EDHF-mediated relaxations in mouse mesenteric arteries.

Endothelial Level (4): Role of PI3K for Enhanced EDHF-Mediated Responses in Mesenteric Arteries

We examined the role of PI3K by using its inhibitor, wortmannin.29 Wortmannin (100 nmol/L, 30 min) had no effects on EDHF-mediated relaxations or hyperpolarizations to ACh in the aorta or mesenteric arteries (Figures 5A–D), whereas it attenuated contractions of the aorta and mesenteric arteries in a concentration-dependent manner (Figure S3A). Wortmannin had no effects on endothelium-independent relaxations to SNP or NS-1619 in both-sized arteries (Figures S3B–C). These results suggest no involvement of PI3K in EDHF-mediated relaxations in mouse mesenteric arteries.
Endothelial Level (5): Role of Cav-1 for Enhanced EDHF-Mediated Responses in Mesenteric Arteries

Systolic blood pressure in Cav-1–/– mice tended to be lower as compared with WT mice (105.6 ± 4.3 vs. 120.0 ± 4.2 mmHg, P=0.05). In Cav-1–/– mice, as compared with WT mice, NO-mediated relaxations were significantly enhanced in the aorta and mesenteric arteries, and EDHF-mediated relaxations were significantly reduced in mesenteric arteries (Figures 6A–C). Consistent with the results of organ chamber experiments, endothelium-dependent hyperpolarizations to ACh in mesenteric arteries from Cav-1–/– mice were significantly attenuated compared with WT mice (Figure 6D). Endothelium-independent relaxations to SNP in both the aorta and mesenteric arteries were slight but significantly enhanced in Cav-1–/– mice compared with WT mice, whereas those to NS-1619 were comparable (Figures S4A,B). These results suggest the involvement of caveolin-1 in the enhanced EDHF-mediated relaxations in mesenteric arteries.

VSMC Level: Role of PKG1α for Enhanced EDHF-Mediated Responses in Mesenteric Arteries

It has recently been reported that PKG1α mediates H₂O₂-induced direct relaxations and hyperpolarizations of mesenteric arteries, but did not inhibit those of the aorta (Figures 7A–C). These results suggest an involvement of a PKG1α-mediated mechanism in VSMC for the enhanced EDHF/H₂O₂-mediated relaxations in mesenteric arteries.

Discussion

The major findings of the present study are as follows: (1) both the endothelium and VSMC contribute to the enhanced EDHF-mediated responses in mesenteric arteries, although the contribution of the endothelium is much greater than that of VSMC; (2) at the endothelial level, eNOS is functionally suppressed in mesenteric arteries compared with the aorta, for which mechanisms mediated by CaMKKβ and caveolin-1 might be involved; (3) genetic disruption of caveolin-1 reduces EDHF-mediated responses; and (4) at the VSMC level, the relaxation response to EDHF/H₂O₂ is enhanced by PKG1α-mediated mechanisms (Figure 8). To the best of our knowledge, this is the first report that demonstrates the molecular mechanisms for the enhanced EDHF-mediated responses in microvessels. These mechanisms might be important to develop a new strategy for cardiovascular protection, as EDHF-mediated responses are relatively resistant as compared with NO-mediated responses.⁵,⁸
Relative Contribution of the Endothelium and VSMC to the Enhanced EDHF-Mediated Responses in Microvessels

We have previously demonstrated that microvascular endothelial cells synthesize and release EDHF/H₂O₂ in response to ACh, bradykinin and substance P, and that exogenous H₂O₂ induces direct relaxations and hyperpolarizations of VSMC in microvessels. Furthermore, we have previously confirmed that the VSMC responses to SNP and NS-1619 are comparable between the aorta and mesenteric arteries. In the present study, we examined for the first time the relative contribution of the endothelium and VSMC to the enhanced EDHF-mediated responses in mouse mesenteric arteries. The results showed that both the endothelium and VSMC contribute to the enhanced EDHF-mediated responses, but to a great extent by the former than by the latter. Although we examined the relative contribution of the endothelium and VSMC with regard to relaxation responses in vitro, a more precise comparison would be the direct measurement of H₂O₂ synthesis by the endothelium between the aorta and mesenteric arteries. However, we found that it is technically difficult to quantify endothelial H₂O₂ production in the aorta and therefore we compared the relative contribution of the endothelium and VSMC to the enhanced EDHF-mediated responses functionally by the relaxation responses in vitro. We then examined the role of the endothelium and VSMC separately in the following experiments.

Functional Suppression of eNOS in Mesenteric Arteries

In order to elucidate the molecular mechanisms for the enhanced EDHF-mediated response in microvessels, we first examined the possible difference in eNOS activity between the aorta and mesenteric arteries; we have demonstrated that eNOS plays a pivotal role not only for NO-mediated responses in the aorta but also for EDHF-mediated responses in mesenteric arteries.15,22 We found that among the eNOS phosphorylation sites, phosphorylation at Ser1177 (stimulatory site) is significantly reduced and that at Thr495 (inhibitory site), it is significantly enhanced in mesenteric arteries compared with the aorta under basal conditions, indicating that eNOS is functionally suppressed in mesenteric arteries. In the present study, we did not examine the expression or affinity of endothelial muscarinic receptors, however, it is widely known that in both the aorta and mesenteric arteries, ACh couples to the muscarinic M3 receptor.15,36,37 Which is followed by an increase in [Ca²⁺]i and Ca²⁺/CaM complex formation.37 This pathway is commonly used for the synthesis of both NO and EDHF in response to ACh.6 In the present study, ACh markedly enhanced eNOS phosphorylation at Ser1177 but not at Thr495 in mesenteric arteries. Thus, we then examined the intracellular signaling pathway for eNOS activation in the process between Ca²⁺/CaM and eNOS phosphorylation at Ser1177, including CaMKKβ, AMPK, PI3K, and caveolin-1.

Roles of CaMKKβ, AMPK and PI3K in the Endothelium

It has been recently demonstrated that the CaMKKβ-AMPK pathway phosphorylates eNOS at Ser1177 (human and mice eNOS Ser1177) via the PI3K-Akt pathway in vitro.27 In order to examine the contribution of each component, we used STO-609 (a CaMKKβ inhibitor), compound C (an AMPK inhibitor) and wortmannin (a PI3K inhibitor). Importantly, STO-609, but not compound C or wortmannin, inhibited EDHF-mediated relaxations and hyperpolarizations to ACh only in mesenteric arteries, suggesting that CaMKKβ, but not AMPK or PI3K, plays an important role in the enhanced EDHF-mediated responses in mesenteric arteries. Although STO-609 had no effects on EDHF-mediated relaxations or hyperpolarizations in the aorta, it tended to inhibit eNOS phosphorylation at Ser1177 in the aorta. Thus, CaMKKβ might be involved in the functional activation of eNOS in mouse mesenteric arteries.

Role of Caveolin-1 in the Endothelium

In caveolin-1−/− mice, NO-mediated relaxations were enhanced in both the aorta and mesenteric arteries, whereas EDHF-mediated relaxations and hyperpolarizations were inhibited in mesenteric arteries. The present findings are consistent with those in recent reports.38,39 These results suggest that functional suppression of eNOS by caveolin-1 is one of the key mechanisms for the enhanced EDHF-mediated responses in microvessels. We have previously demonstrated that eNOS-derived superoxide anions are the precursor of EDHF/H₂O₂ under physiological conditions.16,17,24 In general, superoxide anions are produced from O₂− and electrons in the reductase domain of eNOS.40 In order to synthesize NO, eNOS requires an electron transfer from the reductase domain to the oxidase domain.41 The caveolin-1-binding site is located in the eNOS oxygenase domain. However, it was reported that caveolin-1 interacts with the reductase domain and antagonizes CaM binding, thus compromising electron transfer from the reductase domain to the heme (in the oxygenase domain) and inhibiting NO synthesis.42 It is conceivable that caveolin-1 inhibits the electron transfer, resulting in the enhanced production of EDHF/H₂O₂ from the reductase domains of eNOS (Figure 8). Further studies are needed to address this point.

Role of PKG1α in VSMC

PKG1α mediates H₂O₂-induced relaxation of VSMC, in which phosphorylation of BKCa channels is involved.38 In the present study, Rp-8-Br-cGMPS, a PKG1α inhibitor, significantly inhibited VSMC relaxations and hyperpolarizations in response to exogenous H₂O₂ in mesenteric arteries but not in the aorta, suggesting that a PKG1α-mediated mechanism is involved in the enhanced EDHF-mediated responses in mesenteric arteries. It has recently been demonstrated that knock-in mice expressing only a C42S ‘redox-dead’ version of PKG1α exhibit hypertension, suggesting the importance of EDHF/H₂O₂.35 In those mice, SNP and NS-1619 caused a comparable extent of relaxation as in WT mice, suggesting that VSMC functions themselves are preserved.35

Study Limitations

Several limitations should be mentioned for the present study. First, although we carefully examined the endothelial and VSMC functions separately in isolated blood vessels, the present findings on the mechanisms for endothelial functions should be further confirmed in cultured endothelial cells from the aorta and mesenteric arteries in vitro. Second, the present findings in vitro remain to be confirmed in vivo more detail. Third, it remained to be elucidated at which level of the conduit-resistance artery system such distinct transition of endothelial functions, from the NO-generating system in the conduit artery to the EDHF/H₂O₂-generating system in resistance arteries, occurs. Fourth, although we examined the role of PKG1α in VSMC, other possible mechanisms remain to be examined in future studies. Finally, it remains to be determined whether reactive oxygen scavenging enzymes, such as catalase and glutathione peroxidase, are involved in the mechanisms for the enhanced EDHF-mediated responses in microvessels.
Clinical Implications
In addition to NO-mediated responses, EDHF-mediated responses are substantially involved in the important cardiovascular regulatory mechanisms, including coronary autoregulation, cardiovascular protection against myocardial ischemia/reperfusion injury and metabolic coronary dilatation. Furthermore, EDHF-mediated responses are relatively resistant to atherosclerotic injury, functioning as a back-up system for NO-mediated responses. In the present study, we were able to elucidate the mechanisms for the enhanced EDHF-mediated responses in microvessels, including CAMKKβ and caveolin-1 (both in the endothelium) and PKG1α (in VSMC). Because EDHF-mediated responses are relatively resistant to atherosclerosis and thus are considered as a back-up system for NO-mediated responses, the present findings might provide clues to develop a novel strategy for cardiovascular protection in humans.

Acknowledgments
We thank F. Natsui, F. Morikawa, N. Yamaki, A. Saito, C. Miyamoto and T. Hiroi for their excellent technical assistance.

This work was supported, in part, by the Grant-in-Aid for Scientific Research on Innovative Areas (Signaling Functions of Reactive Oxygen Species), the Grant-in-Aid for Tohoku University Global COE for Conquest of Signal Transduction Diseases with Network Medicine, and the Grants-in-Aid for Scientific Research, all of which are from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan.

Disclosures
None.

References
33. Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459: 793–806.

Supplementary Files

Supplementary File 1

Figure S1. Effects of STO-609 on VSMC responses.

Figure S2. Effects of compound C on VSMC responses.

Figure S3. Effects of PI3K on VSMC responses.

Figure S4. Endothelium-independent relaxations in Cav-1\(^{-/-}\) mice.

Please find supplementary file(s); http://dx.doi.org/10.1253/circj.CJ-12-0197