Electrocardiography (ECG)-gated myocardial perfusion single-photon emission computed tomography (SPECT) is one of the most frequently performed and established methods in patient care for the detection of myocardial ischemia, risk stratification, infarct size and viability.\(^1\) The assessment of left ventricular (LV) myocardial mechanical dyssynchrony using gated-SPECT has recently been introduced, making it possible to assess myocardial perfusion and dyssynchrony simultaneously.\(^3\)

Article p1942

The heart is a muscular pump composed of cardiac myocytes, which play an important role in LV contractile function. The normal myocardium contracts in a coordinated way so that most of the myocardial segments are in nearly the same phase. The ischemic burden results in the inability of myocytes to generate sufficient tension. Consequently, dissipation and wasting of some energy are produced by normal segments. Cardiac dyssynchrony also occurs during periods of post-stress myocardial ischemia. LV regional discordance in contractility is considered to be a predominant mechanism for dyssynchrony in ischemia and fibrosis. LV dyssynchrony in patients with heart failure involves different regions of the LV to produce intraventricular dyssynchrony, which is reported to be related to patient survival.\(^4\),\(^5\)

The unique feature of phase analysis using gated myocardial perfusion SPECT (GMPS) is its temporal ability to focus...
on the timing of myocardial contraction and its spacial distribution. The phase analysis technique is considered to have sufficient temporal resolution for measuring LV dysynchrony. Previous studies have shown that the histogram bandwidth and phase standard deviation (SD) show good correlation with LV dysynchrony. Other studies have demonstrated that phase analysis using GMPS, such as phase SD or bandwidth, can detect ischemia-induced dyssynchrony. There are other non-invasive imaging techniques of evaluating LV mechanical dyssynchrony, such as echocardiography, and magnetic resonance imaging. The advantages of the nuclear cardiology technique over echocardiography in measuring LV dyssynchrony are automation, high repeatability and reproducibility. Even if the data are processed by different observers or in different institutions, obtained quantitative data should have the same result in the same location. Phase analysis by SPECT has widespread availability, simplicity and applicability to past data.

In evaluating LV dyssynchrony, phase analysis of GMPS can be performed by different types of software, including the quantitative gated-SPECT (QGS) software of Cedars Sinai Medical Center, the SyncTool of Emory University, and cardioGRAF, which processes pFAST (perfusion and function assessment by means of gated-SPECT) data files. A phase distribution can be extracted from GMPS imaging, identifying the regional onset of mechanical contraction of the LV. GMPS studies are usually acquired using 8–16 frames per cardiac cycle. A higher temporal resolution may be better obtained with 16 frames per cardiac cycle. Figure illustrates the phase analysis technique in patients with cardiac resynchronization therapy (CRT) using GMPS of 16 frames per cardiac cycle. Recent analysis using multiple Fourier harmonic functions in the phase analysis focuses on the diastolic phase.

Assessment of myocardial perfusion imaging alone underestimates the magnitude of left main coronary artery disease (CAD) due to balanced ischemia. To overcome this drawback in perfusion imaging, a gated-SPECT parameter such as wall thickening, wall motion or post-stress cardiac function was reported as useful for identifying balanced ischemia. The scintigraphic markers of lung uptake, diffuse slow washout or transient ischemic dilatation were also used to detect multivessel CAD. In this issue of the Journal, a clinical investigation by Hida et al focuses on the evaluation of LV mechanical dysynchrony at 30min after exercise in patients with suspected or confirmed CAD. In their study of 278 patients using GMPS of 8 frames per cardiac cycle, the combination of post-stress increases in phase SD, histogram bandwidth, transient ischemic dilatation and summed stress score were found to be better markers of patients with multivessel CAD. When the ischemic area was larger, the extent of LV mechanical dyssynchrony was greater, especially in patients with multivessel CAD. Dysynchrony analysis has the possibility of shedding light on the nuclear evaluation of multivessel CAD. On the other hand, a recent study of 20 patients with reversible perfusion defects did not reveal that large reversible perfusion abnormalities altered the phase SD and histogram bandwidth, when it was performed 1h after the stress. Therefore, further investigation through multicenter, randomized and prospective research is needed to clarify the mechanism of ischemia affecting LV mechanical dyssynchrony.

In conclusion, phase analysis of LV dyssynchrony using GMPS is feasible and has potential for assessing LV dysynchrony and detecting CAD.

Acknowledgments

This work was supported in part by a grant-in-aid for Scientific Research in Japan.

References