Eight-French Intracardiac Echocardiography – Safe and Effective Guidance for Transcatheter Closure in Atrial Septal Defects –

Nam Kyun Kim, MD; Su-Jin Park, MD; Jae Il Shin, MD, PhD; Jae Young Choi, MD, PhD

Background: Intracardiac echocardiography (ICE) was introduced as a new guidance system for transcatheter closure of secundum atrial septal defect (ASD) with Amplatzer septal occluder® (ASO). The aim of this study was to investigate the clinical outcome of ICE-guided transcatheter closure of ASD compared with the trans-esophageal echocardiography (TEE)-guided method.

Methods and Results: From May 2003 to April 2010, 560 patients who underwent transcatheter closure of ASD using ASO in a single institute were analyzed retrospectively. In the TEE-guided group (n=237), all the patients underwent general anesthesia. The median age was 24.2 years (range, 14 months–63 years) and the average weight was 42.3±21.6 kg (range, 8.2–82 kg). One patient underwent surgery due to migration of device. The remaining 236 patients underwent the procedure successfully without significant complication. In the ICE-guided group (n=323), the median age was 30.5 years (range, 7 months–75 years). One patient underwent surgery because of mitral valve encroachment by left atrial disk after device placement. Another patient also underwent surgery due to device embolization. The remaining 321 procedures were performed successfully without major complications. Procedure time was 104.2 min and 87.7 min, respectively (P<0.001).

Conclusions: ICE-guided ASD occlusion with ASO is safe and effective and provides accurate anatomical information, sufficient to perform the procedure. In addition, there were benefits of avoidance of general anesthesia, and shorter procedure time. (Circ J 2012; 76: 2119–2123)

Key Words: Atrial septal defect; Heart; Intracardiac echocardiography; Transcatheter closure

Received November 8, 2011; revised manuscript received April 23, 2012; accepted May 8, 2012; released online June 7, 2012 Time for primary review: 90 days
atrial fibrillation and TEE was used to rule out intracardiac thrombus. These patients were included in group 2. The medical records of these patients were retrospectively analyzed and the demographic data, treatment results, and complications were compared in each group.

TEE Guidance Protocol
For TEE, Philips® echocardiography equipment was used. Hemodynamic state was verified via diagnostic catheterization, and TEE was performed under general anesthesia with endotracheal intubation. All echocardiography was performed according to the recommendations of the American Society of Echocardiography.

ICE Guidance Protocol
The ICE group, along with the TEE group, underwent diagnostic catheterization. If the patient was considered as a candidate for ASD closure, an ICE catheter was inserted and transcatheter closure of ASD was performed under ICE guidance. The ACUSON AcuNav™ 8-Fr ultrasound catheter (Issaquah, WA, USA) with an 8- or 8.5-Fr short sheath catheter introducer was used in all ICE group patients. In all patients, the short sheath catheter introducer was inserted through the left femoral vein. In patients weighing <10 kg, a 5-Fr short sheath catheter introducer was first used for femoral vein approach and then exchanged to an 8-Fr sheath to minimize damage to the femoral vein. The ICE catheter was placed at the right atrium through the femoral vein (Figure 1). After confirming the tricuspid valve at the home view position, the anatomical characteristics were confirmed, steering the probe rightward and posterior to bicaval view and long axis view. The ACUSON AcuNav™ 8-Fr ultrasound catheter, which was used in our catheterization laboratory, is a single-use, multifrequency (5–10-MHz), 64-element, linear phased array, ultrasound catheter, and this catheter is capable of tissue penetration of up to 10 cm and 4-way head articulation to allow multiple angle imaging. ICE views were acquired by guidance according to previously published basic ICE views (Figure 2).

ASD Closure
All patients had diagnostic cardiac catheterization to verify hemodynamic state, and transcatheter closure of ASD was performed only when the ratio of pulmonary blood flow to systemic flow (Qp/Qs ratio) was >1.5. In order to select the most appropriate device size, echocardiographic imaging was used and, concurrently, balloon occlusive diameter or stop flow diameter was measured through balloon occlusion, and the surrounding rim lengths of the ASD were also measured. All the devices used in the current study were ASO. When the rim deficiency was too severe or when the stop flow diameter of the defect was >38 mm, device closure was declared impossible and the procedure was stopped.

Statistical Analysis
Statistical analysis was performed using SPSS version 18.0 (SPSS, Chicago, IL, USA). Continuous variables are expressed as mean±SD. Variables were compared using Student’s T-test or Fisher’s exact test.

Results
Of the 560 eligible subjects, TEE guidance was used in 237 patients and they were categorized as group 1. Group 2, patients who had ICE guidance, included 323 patients. Two patients, who were not included in either group, had transthoracic echocardiographic guidance. There were no statistically significant differences in age, sex, weight, height, or body surface area between the 2 groups. The minimum weight, however, was 8.2 kg in group 1 and 7.3 kg in group 2, indicating that the patients in group 2 were smaller (Table 1).

There were no differences between the mean balloon occlusive diameter (or stop flow diameter), with the mean being 23.0±4.0 mm in group 1 and 22.0±7.7 mm in group 2. The device size also was not statistically significantly different between the 2 groups, with the mean being 22.4±2.9 mm in group 1 and 22.3±7.6 mm in group 2. Qp/Qs ratio (2.5±0.8 in group 1 vs. 2.4±0.7 in group 2, P>0.005), and the fluoroscopy time (14.8 min in group 1 vs. 14.3 min in group 2, P>0.005) was not different between the 2 groups. The total procedure time was
94.2 min in group 1 and 67.7 min in group 2, indicating that the total procedure time in group 2 was statistically significantly shorter than in group 1 (P<0.001). All the group 1 patients required general anesthesia, but none of the group 2 patients required general anesthesia with endotracheal intubation (Table 2).

There was no mortality in both groups, but a case of device embolism (group 1) and a case of deviant device placement (group 2), which required surgery afterwards, were noted as major complications. Two patients in group 1 and 3 patients in group 2 had mitral valve encroachment of left atrial disk after device placement. These patients were referred for surgery after cessation of the procedure. Procedure success rate was 99.6% in group 1 and 99.4% in group 2, which was not statistically significantly different. There were 11 (4.6%) minor complications in group 1 and 12 (3.7%) in group 2. The complete defect closure rate immediately after the procedure in group 1 was 83.7%, and 84.2% in group 2. The complete defect closure rate at the latest follow-up in groups 1 and 2 was 99.0% and 98.7%, respectively (Table 3).

There were some minor complications, such as hematoma of catheterization site, migraine, and transient arrhythmia, but no statistical differences between the 2 groups. There was no oropharyngeal or esophageal damage by TEE probe in group 1,

<table>
<thead>
<tr>
<th>Subject Characteristics</th>
<th>TEE group (n=237)</th>
<th>ICE group (n=323)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>24.2±19.6 (1.1–63; median, 22)</td>
<td>28.4±21.5 (11–75; median, 35)</td>
<td>NS</td>
</tr>
<tr>
<td>M/F</td>
<td>65/172 (1/2.65)</td>
<td>52/111 (1/2.02)</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>42.3±21.6 (8.2–85; median, 49)</td>
<td>44.6±22.4 (7.3–95; median, 53)</td>
<td>NS</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>142.0±32.1 (76–185; median, 155)</td>
<td>140.0±32.9 (67–180; median, 155)</td>
<td>NS</td>
</tr>
<tr>
<td>BSA (kg/m²)</td>
<td>1.3±0.5 (0.31–2.02)</td>
<td>1.3±0.5 (0.38–2.20)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data given as mean±SD.
TEE, tranesophageal echocardiography; ICE, intracardiac echocardiography; BSA, body surface area.

Figure 2. Various intracardiac echocardiography (ICE) views. (A) Home view: this view can be obtained by placing the ICE catheter in the right atrium. Therefore, this view is the standard view. RA, right atrium; RV, right ventricle; TV, tricuspid valve. (B) Balloon occlusion test; this can be performed successfully under ICE guidance. (C) Short axis view of ICE: by using ICE, anatomical characteristics of atrial septal defect (ASD) can be detected successfully. Even in patients with posterior rim deficiency (arrowhead), the procedure can be performed with sufficient imaging support. (D) ICE imaging has the advantage of being able to confirm the device position after transcatheter closure of ASD, especially in patients with posterior rim deficiency (arrowhead).
and there was no vascular or intracardiac damage by ICE catheter in group 2 (Table 4).

Discussion

During interventional treatment for ASD, imaging support other than fluoroscopy, such as echocardiography, is essential for successful completion of the procedure. It has previously been reported that in children with clear transthoracic echo-window, with only transthoracic echocardiographic guidance, successful device closure is possible, and advanced echocardiographic support such as TEE or ICE is unnecessary. Also, there are some reports that in some circumstances, transcatheter closure of ASD can be achieved with only echocardiographic guidance and without fluoroscopy. These reports assert that echocardiographic guidance plays a key role throughout the whole procedure.

TEE is seen as the gold standard for echocardiographic guidance in device closure of ASD. Furthermore, TEE has continuously evolved and has established a solid foothold in the field of interventional cardiology for congenital heart disease. Through technical modifications, the inferior vena cava rim, once hard to visualize on TEE, can now be visualized. Furthermore, 3-D TEE, which has become more popular in recent years, has provided abundant anatomical information during intervention. Rapid advances in 3-D TEE have dramatically reduced image analysis time and, as a result, even real-time 3-D TEE is now available. Real-time 3-D TEE can confirm the location of the ASD as well as the size of the defect, and also the associated anatomical structures surrounding the defect. In particular, if there are multiple defects, it can visually confirm the relative location of the defects as well as the different sizes, and it can clearly demonstrate the relative location of the multiple devices during the interventional procedure.

Although there has been vast improvement in TEE technology, 1 large disadvantage is the need for endotracheal intubation during TEE-guided transcatheter closure of ASD. Consequently, additional personnel are required, including anesthesiologists, echocardiologists, and associated nurses. The procedure time will be prolonged and additional equipment will be needed for endotracheal intubation and general anesthesia. Furthermore, it can also affect hospitalization duration, resulting in a higher number of hospital days in TEE-guided patients than ICE-guided patients.

Although intravascular ultrasound was developed in the early 1970s, active clinical use has been delayed until the 21st century. Currently used ICE systems are the AcuNav catheter (Biosense Webster, CA, USA), the ViewFlex catheter (EP Medsystems, NJ, USA) and the Ultra ICE catheter (Boston Scientific, Boston, MA, USA). Among these different ICE systems, the AcuNav catheter system, which was developed from

Table 2. Procedure Parameters

<table>
<thead>
<tr>
<th></th>
<th>TEE group (n=237)</th>
<th>ICE group (n=323)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD/SFD (mm)</td>
<td>23.0±4.0 (9–38)</td>
<td>22±7.7 (8–38)</td>
<td>NS</td>
</tr>
<tr>
<td>Device size (mm)</td>
<td>22.4±3.9 (10–38)</td>
<td>22.3±7.6 (9–38)</td>
<td>NS</td>
</tr>
<tr>
<td>Qp/Qs</td>
<td>2.5±0.8 (1.6–4.5)</td>
<td>2.4±0.7 (1.5–4.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>14.8</td>
<td>14.3</td>
<td>NS</td>
</tr>
<tr>
<td>Procedure time (min)</td>
<td>94.2</td>
<td>67.7</td>
<td><0.001</td>
</tr>
<tr>
<td>GEA</td>
<td>237</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Data given as mean±SD. BOD, balloon occlusive diameter; SFD, stop flow diameter; Qp, pulmonary blood flow; Qs, systemic blood flow; GEA, general endotracheal anesthesia. Other abbreviations as in Table 1.

Table 3. Treatment Outcome and Complications

<table>
<thead>
<tr>
<th></th>
<th>TEE group (n=237)</th>
<th>ICE group (n=323)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (%)</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Complications, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>1† (0.4)</td>
<td>1‡ (0.3)</td>
<td>NS</td>
</tr>
<tr>
<td>Minor</td>
<td>11 (4.6)</td>
<td>12 (3.7)</td>
<td>NS</td>
</tr>
<tr>
<td>Complete closure (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At discharge</td>
<td>83.7</td>
<td>84.2</td>
<td>NS</td>
</tr>
<tr>
<td>Latest follow-up</td>
<td>99.0</td>
<td>98.7</td>
<td>NS</td>
</tr>
</tbody>
</table>

†Device embolization, ‡deviant device placement. Abbreviations as in Table 1.

Table 4. Minor Complications

<table>
<thead>
<tr>
<th></th>
<th>TEE group (n=237), n (%)</th>
<th>ICE group (n=323), n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematoma</td>
<td>7 (3.0)</td>
<td>6 (1.9)</td>
<td>NS</td>
</tr>
<tr>
<td>Migraine</td>
<td>2 (0.8)</td>
<td>2 (0.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Transient arrhythmia</td>
<td>2† (0.8)</td>
<td>3‡ (0.9)</td>
<td>NS</td>
</tr>
</tbody>
</table>

†One PVC and 1 atrial tachycardia; ‡1 PVC and 2 atrial arrhythmias. PVC, pulmonary venous congestion. Other abbreviations as in Table 1.
a single-array TEE prototype probe, is most frequently used for ASD device closure. The benefits and usefulness of ICE guidance have already been reported in previous studies.13,14,20 Recently, an 8-Fr catheter, with a 33% smaller cross-sectional area than the existing 10-Fr catheter, has been developed for clinical use with the AcuNav catheter system. With this new catheter, it is now possible to use ICE more safely in smaller children. A previous study has confirmed that in patients weighing <15 kg, a 10-Fr ICE catheter can be successfully used for intervention, with adequate image acquisition.29 The present study also showed that compared to the already established 10-Fr catheter system, the new 8-Fr catheter system can be used in smaller patients, the smallest weighing 7.3 kg, with good image quality acquired safely and effectively. In the present study, 33 patients (10.2%) of 323 in group 2 weighed <10 kg, and all of the patients had successful procedures under ICE guidance. Also, this study has shown that although the 8-Fr ICE catheter is longer than the 10-Fr catheter, the handling of the catheter was not more difficult than that for the 10-Fr ICE catheter in acquiring sufficient images for procedure success. The single-use ICE catheter still has some disadvantages, especially with regard to cost, in percutaneous ASD closure, but the avoidance of general anesthesia reduces the need for associated personnel such as anesthesiologists and nurses, and also reduces the need for ventilation and associated equipment and space. Echocardiologists are also not needed, avoiding the need for the presence of another doctor during the procedure. Considering all these facts, the cost of hospitalization for percutaneous ASD closure with ICE is not much higher than that for TEE.29,30 Given the regional and social characteristics, ICE guidance is possibly more efficacious, safe, and reasonably priced than TEE guidance. Furthermore, radiation exposure in the ICE-guided group was noticeably lower, which may be an advantage for both the patient and the operator.31

In conclusion, ICE-guided ASD occlusion with ASO is safe and effective and provides accurate anatomical information, sufficient to perform the procedure. In the ICE-guided group, there were no significant complications or limitations of information and procedure, compared with the TEE-guided group. In contrast, there were benefits of avoidance of general anesthesia, endotracheal intubation, and shorter procedure time in the ICE-guided group.

References