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ongenital heart diseases (CHD) affect approximately 
0.75–0.9% of newborns and are the leading cause of 
death in neonates and infants.1,2 The clinical issues of 

CHD were once limited to pediatric cardiologists and pediatric 
cardiac surgeons, because the survival rate of patients was, in 
general, low. Because medical and surgical treatments of CHD 
have become extremely advanced, over 90% of CHD patients 
survive until adulthood.3,4 Consequently, the total number of 
adult patients with CHD currently exceeds that of children4,5 
and CHD is now becoming an essential part of healthcare not 
only for pediatric but also for adult cardiologists.

Among the various kinds of CHD, heterotaxy syndrome is 
one of the most serious. This syndrome occurs in approximate-
ly 1 to 5,000–7,000 of live births with CHD.6,7 Heterotaxy syn-
drome is primarily induced by disorders of left-right axis de-
termination during early embryonic development. Recently, 
the molecular mechanisms of the left-right axis determination 
have been extensively investigated in animal models including 
genetic engineering of mice.8–11 Briefly, an initial break in sym-
metry occurs at the primitive node as a leftward “nodal flow”, 
which is created by unidirectional rotation of nodal cell cilia. 
This flow provokes asymmetry signals that are transmitted 
toward the left lateral plate mesoderm (LPM), where down-
stream left-side specific growth and transcription factors, Nodal, 
Lefty2, and Pitx2c, are activated. As a result, Pitx2c and other 
undetermined factors regulate genetic programs in the left side 
of the body and create asymmetric organ morphogenesis. Human 

genetics have also revealed several genes that are responsible 
for left-right laterality and heterotaxy syndrome, including ZIC3, 
NODAL, LEFTY2.11,12

In the clinical field, precise diagnosis and surgical treatment 
of patients with heterotaxy syndrome have recently advanced 
as well. However, outcomes and the survival rate of patients 
are not satisfactory because this syndrome is often associated 
with combinations of serious CHDs.13,14 The mid- to long-term 
prognosis of heterotaxy patients who undergo the Fontan pro-
cedure for single ventricular physiology is now an important 
issue in pediatric and adult CHD clinics.15–18

Morphological Characteristics of  
Heterotaxy Syndrome

Patients with heterotaxy syndrome are subdivided into “bilat-
eral right-sided” (right isomerism) or “bilateral left-sided” (left 
isomerism) according to the characteristic morphology of the 
atrial appendages of the heart.13,14 However, there is a wide 
spectrum of pathology, with considerable overlap of the ana-
tomical features. The morphological characteristics of hetero-
taxy syndrome are summarized in Table.

Molecular and Cellular Mechanisms of  
Left-Right Determination

To elucidate the etiology of heterotaxy syndrome, it is neces-
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sary to understand the underlying molecular and cellular mech-
anisms of determination of the left-right body axis during early 
embryogenesis.8–12 This process initiates in the primitive node 
at E7.5 in mice and develops through the following path-
ways:19,20 (1) breaking of symmetry as a result of the leftward 
nodal flow generated by rotational movement of primary cilia 
in the node; (2) transmission of asymmetric signals to the 
LPM; (3) asymmetric expression of Nodal and Lefty2, which 
encodes a feedback inhibitor of Nodal signaling, in the LPM; 
and (4) situs-specific morphogenesis mediated by asymmetric 
expression of Pitx2, which encodes a transcription factor and 
is regulated by Nodal signaling.

Node Cell Monocilia Create Leftward “Nodal Flow” and 
Activate Asymmetry Signaling Around the Node
The determination of left-right asymmetry starts as leftward 
nodal flow generated by rotational movement of monocilia in 
the primitive node21,22 (Figures 1A–D). Monocilia consist of 
2 different, highly sensitive subtypes: motile and immotile 
monocilia (Figure 1A).23–27 Motile cilia are predominantly 
located in the central region of the node and contain left-right 
dynein (lrd) in mice,28 and the gene responsible for Kartagener’s 
syndrome, DNAH5, in human29 as a motor protein on micro-
tubules (Figure 1B). In contrast, the immotile mechanosen-
sory cilia expressing the calcium ion channel polycystin-2 
(Pkd2) are located in the peripheral region of the node.23,30 
Clockwise rotation of the motile cilia creates a unidirectional 
leftward flow at the surface of the node because the rotational 
axes of the cilia tilt in the caudal direction of the embryo 
(Figure 1C).31,32

Although the nodal flow is the initial break in body sym-

metry, the precise mechanism of how this flow is perceived by 
nodal and perinodal cells remains uncertain. One hypothesis 
(chemosensory model) is that the nodal flow produces a gradi-
ent of left determinant particles (node vesicular parcels, NVPs) 
containing hedgehog proteins and retinoic acid secreted by 
node pit cells (Figure 1D).27,33 The secretion of NVPs is regu-
lated by fibroblast growth factor 8.33 These morphogens, in 
association with Nodal secreted in the node, activate down-
stream signaling of Nodal in the left-side perinodal cells. For 
instance, a transcription enhancer, ANE and Smad2/3, is acti-
vated by Nodal signaling and exhibits left dominant asymmet-
ric expression in perinodal cells.20 Consequently, the left-side 
dominant active Nodal in the node is translated into asymme-
try in the left LPM.

An alternative hypothesis (mechanosensory model) is that 
the leftward nodal flow provokes an asymmetrical increase 
influx of Ca2+ ion in the sensory cilia cells through PKD2, a 
causative gene for human polycystic kidney disease.23,32 This 
Ca2+ influx is linked to the activation of Nodal in the left-side 
perinodal cells, which is consequently transferred to the left 
LPM (Figure 1D).

Experimental creation of the reverse nodal flow results in a 
reverse pattern of asymmetric gene expression.34 Mutations in 
the left-right dynein (Dnahc11)35 or kinesin (KIF13),36,37 which 
are the motor proteins of microtubules, give rise to randomiza-
tion of the left-right asymmetry. Mutations in dynein assembly 
factor, DNAAF3, induce primary cilia dyskinesia and distur-
bance of left-right asymmetry in mice.38 In embryos with mu-
tations of Noto, a transcription factor regulating cilia forma-
tion, left-right asymmetry of internal organs and expression of 
laterality markers is randomized.39 The Notch ligand Dll1-

Table.  Morphological Characteristics of Heterotaxy Syndrome

Right isomerism Left isomerism

    Cardiovascular malformations     Cardiovascular malformations

        Common atrium with bilateral right atrial appendages         Bilateral left atrial appendages

        Mesocardia/dextrocardia         Complete/incomplete AV septal defect

        Atrioventricular discordance         Unbalanced ventricles

        Single right ventricle     �    Persistent left superior vena cava sometimes draining into 
the left atrium

        AV septal defect         Interrupted hepatic portion of the inferior vena cava

    �    Common AV connection associated with AV valve regurgita-
tion

        Partial anomalous pulmonary venous drainage

        Double-outlet right ventricle         Hypoplastic sinus node (sick sinus syndrome)

        Malposition of the great arteries         Single/paired AV nodes

        Pulmonary stenosis or atresia     �    Interruption between AV node and His bundles (congenital 
AV block)

    �    Total anomalous pulmonary venous drainage (with/without 
PVO)

 
    Extracardiac malformations

        Right aortic arch         Bilateral left-sided lungs and bronchi

        Bilateral superior vena cava         Bilateral hyparterial bronchi

        Bilateral sinus node         Polysplenia

        Paired (anterior/posterior) AV nodes with sling formation         Midline liver

 
    Extracardiac malformations/dysfunctions

        Extrahepatic biliary atresia/hypoplasia

        Bilateral right-sided lungs and bronchi         Extrahepatic portal vein atresia

        Asplenia (susceptibility to Streptococcus pneumoniae)

        Symmetrical liver

        Right-sided stomach

        Malrotation of the intestine

        Bronchial cilia dysfunction

AV, atrioventricular; PVO, pulmonary venous obstruction.
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mediated Notch signaling pathway plays a primary role in the 
establishment of left-right asymmetry by directly regulating 
expression of Nodal around the node.40 A t-box transcription 
factor, Tbx6, is also involved in left-right determination through 
Notch-mediated Nodal signaling and formation of node cell 
monocilia.41 A member of the GLI superfamily zinc finger 
transcription factor, Zic3, is also involved in left-right pattern-
ing.42,43 The precise mechanism of the laterality defect remains 
unknown, but Zic3 deficiency is associated with decreased 
expression of cardiac-specific genes, including Nkx2.5, Tbx5 
and ANF.44 Epigenetic regulation with a chromatin modifier, 
Baf60c, has also been shown to control left-right asymmetry 
via Notch-mediated induction of Nodal.45 In addition to acti-
vation of Nodal in the left side of the node, an endogenous 
nodal antagonist, Cerl2, is expressed around the right side of 
the node and is responsible for downregulation of Nodal in the 
right side of the embryo.20,46,47

An experimental perturbation of the left-right determination 
process induced by maternal administration of retinoic acid 
at E6.5 to E7.0 is shown in Figure 2. Figures 2A–D and 
Figures 2E–I demonstrate dissected late fetal mice with right 
and left atrial isomerism, respectively. Nodal mRNA expres-
sion is limited in the left-side in a control mouse embryo 
(Figure 2J), and Nodal expression is randomly distributed in 
a RA-treated one (Figure 2K).

Asymmetry Signaling Transmits to the Left LPM and 
Upregulates Left Determinants Such as Nodal, Lefty2,  
and Pitx2
Transmission of Nodal to the left LPM followed by Pitx2 ac-

tivation and the consequent heart morphogenesis in normal 
subjects is summarized in Figure 3A. Possible mechanisms of 
right/left isomerism and situs inversus from the viewpoint of 
nodal flow and the distribution of left determinants are shown 
in Figures 3B,C.

Activated Nodal in the left side of the primary node is trans-
mitted toward the left LPM and midline. A member of the 
transforming growth factor (TGF)-β superfamily growth/dif-
ferentiation factor 1 (GDF1) plays a role in the transportation 
of Nodal.48,49 Nodal activates other members of the TGF-β 
superfamily: lefty1 in the left LPM and lefty2 in the midline.50 
Lefty1 and lefty2 compete and antagonize nodal activity to 
restrict the extent and duration of nodal signaling.51 Bone mor-
phogenic protein (BMP) also plays a role in negatively regu-
lating Nodal expression. Chordin and noggin, which are BMP 
signaling antagonists, promote Nodal signaling around the node, 
while BMP signaling represses Nodal expression in the left 
LPM.52,53 The Nodal signaling pathway is mediated by an 
activin receptor complex composed of a dimmer of the type I 
activin receptor, ActRIB, and a dimeric type II receptor, Act-
RII or ActRIIB.54 Different from conventional Activin signal-
ing, the Nodal pathway requires activities of membrane-bound 
EGF-CFC co-receptors, Cripto and Cryptic.55 Loss-of-func-
tion mutations in the EGF-CFC genes are associated with left-
right laterality defects.56

Consequently, Nodal in the left LPM upregulates a transcrip-
tion factor, Pitx2. Pitx2 is a major laterality gene and plays a 
direct and pivotal role in asymmetric organogenesis of the heart 
and other visceral organs.57 Pitx2c, a left-right asymmetric 
isoform, is expressed in the left LPM, outflow tract myocar-

Figure 1.    Breaking of symmetry as a result of the leftward nodal flow generated by rotational movement of primary cilia in the 
node. Nodal cell cilia comprise motile and mechanosensory ones (A). Cilia consist of microtubules and dynein arms, which ex-
press left-right dynein (LRD) in mice (B). The rotational axes of the cilia tilt caudally in embryos, which creates unidirectional left-
ward “nodal flow” (C). Signaling mechanism of Nodal and related molecules in the nodal pit cells and surrounding node crown 
cells (D). NVP, nodal vesicular parcels.
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dium, left side of the brachial arch, artery, and the left atri-
um.58,59 The loss-of-function of Pitx2c induces severe cardiac 
malformations including right isomeric heart.59 Recently, Pitx2 
was identified as a suspect for human atrial electric and struc-
tural remodeling arrhythmias, because, for example, PITX2C 
is significantly decreased in human patients with sustained atri-
al fibrillation.60 Cited2, a transcriptional co-activator and is a 
negative regulator of HIF-1α, is also involved in left-right pat-
terning.61,62 In association with AP2, Cited2 activates Nodal-
mediated gene transcription such as Nodal, Lefty2, and Pitx2 
in the LPM.61,63 

Genes Associated With Human Heterotaxy Syndrome
Recent human and animal model studies have provided insights 
into the genetic and developmental etiology of the heterotaxy 
syndrome. In humans, genes that are associated with hetero-
taxy syndrome are ZIC3, NODAL, CFC1, ACVR2B, LEFTY2, 
CITED2, and GDF1.44,56,64–67

Clinical Manifestation of  
the Heterotaxy Syndrome

Because the overall short- to mid-term prognosis of heterotaxy 
patients is not satisfactory, treatment is determined by the na-
ture and severity of the cardiac and extracardiac abnormali-

ties.68,69 Factors that deteriorate the prognosis of heterotaxy 
patients have been described as complications with pulmonary 
venous obstruction, pulmonary arterial distortion, regurgita-
tion of the atrioventricular valve, elevated pulmonary vascular 
resistance, and impaired ventricular function.70

Right Isomerism
Neonates with right isomerism typically show a single atrium, 
single right ventricle, and a univentricular atrioventricular 
connection often associated with atrioventricular valve regur-
gitation. First stage palliation of such patients is control of pul-
monary blood flow. If the pulmonary artery is atresic or se-
verely stenotic, intravenous administration of prostaglandin 
E1 is necessary to open the left ductus, followed by the surgi-
cal operation of systemic pulmonary shunt (modified Blalock-
Taussig shunt). If the pulmonary artery is not stenotic, pul-
monary artery banding is necessary to protect the pulmonary 
vasculature until the Glenn and Fontan procedures can be per-
formed. Both surgical interventions are generally performed 
approximately 2–4 weeks after birth, depending on the pa-
tient’s body weight and complications. Pulmonary venous ob-
struction because of total anomalous pulmonary venous drain-
age should be precisely diagnosed and immediately repaired 
by surgical operation. However, the complication of pulmonary 
venous obstruction in patients with right isomerism is prob-

Figure 2.    Experimental perturbation of the left-right determination process induced by maternal administration of retinoic acid at 
E6.5 to E7.0. A late fetal mouse treated with retinoic acid at E6.5 shows right atrial isomerism (A–D). A late fetal mouse treated with 
retinoic acid at E7.0 shows left atrial isomerism with multiple spleen (E–I). Nodal mRNA expression is limited in the left side of a 
control mouse embryo (J), while Nodal is randomly distributed in a RA-treated one (K).
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lematic because recurrent obstruction often occurs despite sur-
gical repair, including sutureless techniques.71 At 3–6 months 
after the first palliation, cardiac catheterization is performed to 
ensure that pulmonary arterial pressure and resistance are ap-
propriate for the next procedure. In some patients with right 
isomerism, the normal 6th pharyngeal arch-derived pulmonary 
arteries are underdeveloped and pulmonary blood flow is sup-
plied by major aortopulmonary collateral arteries (MAPCAs). 
In these cases, unifocalization of the MAPCAs in combination 
with a systemic pulmonary shunt is necessary in infancy if 
applicable.

Second-stage palliation is a bidirectional Glenn shunt, where-
by the right and/or left superior vena cava is isolated and con-
nected to the pulmonary artery. This operation is, in general, 
performed around 6 months after birth. If the atrioventricular 
valve regurgitation is hemodynamically significant, simultane-
ously repair or replacement of the common atrioventricular 
valve is necessary. At 4–6 months after bidirectional Glenn 
shunt, cardiac catheterization is again necessary to evaluate 
whether the hemodynamic conditions are satisfactory for the 

final palliation of a Fontan-type procedure, which nowadays 
means total cavopulmonary connection (TCPC).72 The criteria 
for successful Glenn shunt and TCPC include pulmonary arte-
rial pressure <15 mmHg, pulmonary arterial resistance <2.5 U/m2, 
atrioventricular valve regurgitation <mild, single ventricular 
ejection fraction >50%, and no significant distortion or steno-
sis of the pulmonary branch arteries.73–75 Significant stenotic 
lesions of the pulmonary arteries should be treated using per-
cutaneous transluminal balloon angioplasty. In patients with 
severe hypoxia, aortopulmonary collateral arteries develop and 
supply blood to the pulmonary circulation. These collateral 
vessels seemingly improve cyanosis, but the retrograde blood 
flow interferes with normal antegrade pulmonary arterial flow 
and consequently raises the central venous pressure after TCPC 
completion.76 These collateral vessels should be occluded with 
catheter-based coil embolization before the Fontan procedure.

The third-stage palliation for right isomerism patients is to 
connect the inferior vena cava and hepatic veins to the pulmo-
nary artery. Recently, a modification using an extracardiac 
artificial conduit type TCPC is most often used, because the 

Figure 3.    Signal transmission of Nodal to the left lateral plate mesoderm followed by Pitx2 activation and consequent heart mor-
phogenesis in normal embryos (A). Possible mechanisms of right/left isomerism and situs inversus from the viewpoint of nodal 
flow and distribution of left determinants (B,C). Right isomerism is a condition where production of left determinants is low and/or 
nodal flow is abnormal. As a result, the left signal is not activated in both sides. Left isomerism is a condition where production of 
left determinants is normal but nodal flow is abnormal. As a result, the left signal is activated in the both sides. Normal production 
of left determinants and inverse nodal flow results in situs inversus.
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long-term prognosis of the conventional procedure (atriopul-
monary connection, APC) has proved to be unsatisfactory, 
characterized by enlargement of the atrium, intractable atrial 
tachyarrhythmias, and thromboembolism.

After successful completion of the TCPC, cyanosis disap-
pears and the general condition of the patient improves. How-
ever, the number of right isomerism patients who have under-
gone successful Fontan procedure is approximately 50%, 
because right isomerism is often accompanied by a combina-
tion of severe and complicated CHDs.77 Biventricular repair 
can be achievedin only a few patients with right isomerism.78 
The surgical procedures for right isomerism are illustrated in 
Figure 4A.

Left Isomerism
In contrast to right isomerism, the combination of the cardiac 
malformations in left isomerism is not so complicated. Left 
isomerism is typically associated with atrioventricular septal 
defect (AVSD), persistent left superior vena cava, interrupted 
hepatic portion of the inferior vena cava, and atrioventricular 
conduction disturbance.13 Patients with the complete type of 

AVSD may undergo pulmonary artery banding in the neonatal 
period to protect the pulmonary vasculature. In left isomerism, 
the sinus node and atrioventricular node are usually hypoplas-
tic and sinus bradycardia or complete atrioventricular block is 
a frequently accompaniment. In patients with severe bradycar-
dia because of complete atrioventricular block from the fetal 
period, implantation of a pacemaker should be considered im-
mediately after birth. Several months after pulmonary arterial 
banding, cardiac catheterization should be performed to ensure 
decreased pulmonary arterial pressure and resistance. Biven-
tricular repair with a 2-patch method is usually performed for 
the complete type of AVSD with balanced ventricles.79

AVSD with unbalanced ventricles is sometimes seen in pa-
tients with left isomerism, where either of the ventricles and 
the inflow tract is significantly hypoplastic, for instance in less 
than 30%.80 In these cases, biventricular repair is not feasible. 
Bidirectional Glenn anastomosis followed by extracardiac shunt 
between the hepatic veins and pulmonary artery should be con-
sidered according to the criteria of the operation. If the pa-
tient’s systemic outflow tract exhibits signs of potential steno-
sis, the double-barrel Damus-Kaye-Stansel operation is also 

Figure 4.    Surgical procedures of right isom-
erism (A-1–A-3) and left isomerism (B-1–B-3). 
Representative right atrial isomerism (A-1) after 
bilateral bidirectional Glenn shunt (A-2), and 
completion of the Fontan procedure (total ca-
vopulmonary connection, TCPC) (A-3). Repre-
sentative left atrial isomerism (B-1) after bilat-
eral bidirectional Glenn anastomosis (total 
cavopulmonary shunt, TCPS) (B-2), and com-
pletion of the Fontan procedure (TCPC) (B-3).
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performed in order to prevent ventricular outflow obstruction 
after the bidirectional Glenn shunt.

In either case of right or left isomerism, a hepatic to pulmo-
nary connection is mandatory to avoid the development of 
pulmonary atriovenous fistula.81 Congenital absence of the por-
tal vein is a rare but noteworthy complication of left isomer-
ism.82 Pulmonary arterial hypertension may develop because 
of massive portosystemic shunt via the ductus venosus or other 
venous collaterals. Surgical procedures for left isomerism are 
illustrated in Figure 4B.

Long-Term Prognosis of Heterotaxy Patients
Although the medical and surgical treatments of heterotaxy 
syndrome are remarkably advanced, the long-term prognosis 
of the patients remains unsatisfactory. Right isomerism has 
been recognized as one of the worst forms of CHD, with the 
overall 5-year survival ranging from 30% to 74%. The results 
are better for left isomerism, with 5-year survival rates ranging 
between 65% and 84%, which is still considerably lower than 
survival for most other forms of CHD.83 The main reason is 
that the nature of the Fontan single ventricle physiology is 
fundamentally imperfect and the Fontan circulation is likely 
to fail earlier than the normal biventricular counterpart. Man-
agement of the complications of the Fontan circulation and 
improvement of the long-term prognosis are becoming impor-
tant issues in the field of pediatric and adult CHD.17,18 Cardiac 
complications include intractable atrial or ventricular arrhyth-
mia, atrioventricular valve regurgitation, progressive heart 
failure, thromboembolism, pericardial effusion, and infectious 
endocarditis.70,84–86 Extracardiac complications include pleural 
effusion, plastic bronchitis, progressive cyanosis because of 
pulmonary arteriovenous shunts or systemic venous shunt to 
the left heart, liver dysfunction, liver cirrhosis, hepatocellular 

carcinoma,87 glucose intolerance and diabetes,88 renal dysfunc-
tion, protein-losing enteropathy (PLE),85,86 ascites, menstrual 
disorders and subfertility in female patients,89 systemic edema, 
and systemic thromboembolism including cerebral infarc-
tion.70,84,85 High risks of pregnancy and delivery, including 
deterioration of arrhythmias, progression of heart failure, co-
agulopathy, and miscarriage, have also been reported in women 
with Fontan circulation.90 Representative long-term complica-
tions of the Fontan operation are illustrated in Figure 5.

PLE
PLE, one of the most severe manifestation of the failing 
Fontan circulation, occurs in 5–10% of the total postoperative 
cases.70,85,86,91 Chronic loss of serum proteins into the gastro-
intestinal tract results in systemic edema, ascites, pleural effu-
sion, diarrhea, gastrointestinal bleeding, susceptibility to in-
fections, and ultimately cachexia. The underlying mechanism 
of PLE remains uncertain. Elevated concentrations of inflam-
matory factors, such as tumor necrosis factor (TNF)-α or IFN-
α, dilatation of intestinal lymphatic vessels, and widening of 
gap junctions between intestinal epithelial cells may be in-
volved in the protein and fluid losses.92 Liver cirrhosis is often 
associated with the postoperative state of the Fontan circuits, 
in which elevated portal resistance and mesenteric pressure 
may be involved in the pathogenesis of PLE. Steroids, high-
molecular-weight heparin,93 sildenafil,94 surgical interventions 
(eg, creation of a systemic-to-pulmonary venous atrial-level 
communication (fenestration)95 or conversion of the Fontan 
circuit)86 have been described as effective. Recently, the effi-
cacy of oral controlled-released steroid, budesonide, for PLE 
has been reported.96,97 To date, however, cardiac transplanta-
tion is considered to be the only and complete resolution of 
PLE pathophysiology.98,99

Arrhythmias
Reentrant atrial tachyarrhythmias are the most common in pa-
tients after the Fontan operation and are often associated with 
deterioration of hemodynamics, either causally or as a result.70 
Hemodynamic abnormalities such as valve regurgitation or 
outflow obstruction, if present, should be aggressively treated 
by surgery. Catheter ablation is generally challenging because 
the anatomical structure of the patient is complex and catheter 
approach is difficult after TCPC, even with the development 
of the contemporary 3-dimensional mapping system.100,101 The 
Maze procedure may be considered, particularly where con-
version of the circuit is necessary.102

Heart Failure
The initial feature of heart failure long after the Fontan proce-
dure is generally worsening of ventricular relaxation and com-
pliance.70,103,104 These abnormalities may be caused by expo-
sure to hypoxia and volume/pressure overload preceding the 
Fontan procedure, repetitive surgical operations, and the he-
modynamic disadvantages of the Fontan circuit. These chang-
es are primarily progressive, potentially reducing ventricular 
filling volume, elevating pulmonary arterial pressure, and con-
sequently leading to failure of the Fontan circuit. Late after the 
Fontan procedure, systolic dysfunction becomes apparent in a 
group of patients. Administration of angiotensin-converting en-
zyme inhibitors or β-blockade may be beneficial for particular 
patients, although the clinical evidence and cellular mecha-
nisms remain to be elucidated.105,106 

Hepatic Dysfunction
Hepatic dysfunction, liver fibrosis, and cirrhosis are common 

Figure 5.    Possible mid- to long-term complications after com-
pletion of the Fontan procedure for heterotaxy patients.
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complications in patients long after the Fontan operation.70,107,108 
Sinusoidal dilatation and sinusoidal fibrosis are marked in 
Fontan patients.107,108 The cause of the hepatic changes may be 
chronic elevation of central venous and portal venous pres-
sures.87 Significant portal fibrosis had occurred in most of those 
who died soon after the Fontan procedure, suggesting that 
hepatic fibrosis begins before the Fontan operation.109 Recently, 
cases of hepatocellular carcinoma after the Fontan operation 
have been reported.110 Careful observation is necessary to de-
tect the hepatic changes long after the Fontan operation.

Management of the Failing Fontan Patient
The patients who undergo APC or the lateral tunnel procedure 
are likely to be complicated with thromboembolism or intrac-
table arrhythmias because of enlargement of the right atri-
um.70,86 Surgical intervention with conversion to TCPC is re-
quired before such complications become irreversible.102,111 A 
right atrial Maze procedure is simultaneously considered in 
patients with intractable atrial tachyarrhythmia.102,112

Cardiac transplantation may be the only option for patients 
with severe heart failure, intractable arrhythmias, or recurrent 
PLE.98,99,113 

Future Directions
In the basic science field, embryonic development of left-right 
asymmetry has been uncovered by means of genetic engineer-
ing of mice. In addition, advanced human genetics has uncov-
ered many of the genes responsible for human heterotaxy 
syndrome. By means of innovative technologies, such as next-
generation sequencer or patient-based human inducible plu-
ripotent stem cells, novel genes will be clarified and analyzed. 
In the clinical field, anatomical and physiological diagnosis 
from the fetal period, better clinical management after birth, 
tailor-made surgical operations, and systematic follow-up of 
the patients will improve their prognosis. Cell or tissue-based 
regeneration therapies could recover cardiac function of the 
failing Fontan patients. Multiple approaches including basic 
and clinical science are necessary to improve the prognosis 
and quality of life of heterotaxy patients.
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