Optical coherence tomography (OCT) is an innovative intravascular imaging tool that can be used to examine coronary atherosclerotic lesions at a resolution (10–15 μm) that far exceeds that of existing methods such as intravascular ultrasonography (IVUS), by an order of magnitude. In the research field, on account of its superior resolution, OCT has been used for qualitative assessment of vulnerable plaque characterized by thin-cap fibroatheroma; such plaque is the precursor of the ruptured thrombotic plaque, plaque containing calcium nodules, and plaque erosion.

For some plaques, the adventitia, external elastic membrane, deep edge of the intima, and/or internal elastic membrane may be identified. However, for others, these features may not be seen because the very high resolution of OCT restricts the depth of penetration of the light beam through blood and tissue (to 1–3 mm), resulting in incomplete reflection from the deeper arterial layers. Moreover, a necrotic core imaged by OCT is a signal-poor region within an atherosclerotic plaque, with poorly delineated borders, a fast OCT signal drop-off, and little or no OCT signal backscattering, within a lesion that is covered by a fibrous cap. Thus, because light does not penetrate well through the necrotic core, especially in large vessels, it is generally agreed that OCT is not capable of measuring the thickness, area, or volume of the necrotic core and thus the plaque burden in large vessels, when the external elastic membrane cannot be identified.

There are a number of compelling pieces of evidence that arterial outward remodeling (positive remodeling) is associated with vulnerability in the coronary artery. Previous IVUS optical coherence tomography (OCT) is an innovative intravascular imaging tool that can be used to examine coronary atherosclerotic lesions at a resolution (10–15 μm) that far exceeds that of existing methods such as intravascular ultrasonography (IVUS), by an order of magnitude. In the research field, on account of its superior resolution, OCT has been used for qualitative assessment of vulnerable plaque characterized by thin-cap fibroatheroma; such plaque is the precursor of the ruptured thrombotic plaque, plaque containing calcium nodules, and plaque erosion.

For some plaques, the adventitia, external elastic membrane, deep edge of the intima, and/or internal elastic membrane may be identified. However, for others, these features may not be seen because the very high resolution of OCT restricts the depth of penetration of the light beam through blood and tissue (to 1–3 mm), resulting in incomplete reflection from the deeper arterial layers. Moreover, a necrotic core imaged by OCT is a signal-poor region within an atherosclerotic plaque, with poorly delineated borders, a fast OCT signal drop-off, and little or no OCT signal backscattering, within a lesion that is covered by a fibrous cap. Thus, because light does not penetrate well through the necrotic core, especially in large vessels, it is generally agreed that OCT is not capable of measuring the thickness, area, or volume of the necrotic core and thus the plaque burden in large vessels, when the external elastic membrane cannot be identified.

There are a number of compelling pieces of evidence that arterial outward remodeling (positive remodeling) is associated with vulnerability in the coronary artery. Previous IVUS

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Received January 26, 2015; accepted January 27, 2015; released online February 4, 2015

Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan

Mailing address: Kenji Sakata, MD, PhD. Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan. E-mail: kenjis@yu.incl.ne.jp


All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
studies reported that positive remodeling was detected more frequently in unstable coronary lesions. Furthermore, autopsy studies have shown that positive remodeling is associated with underlying lesions with the histological characteristics of plaque vulnerability, such as a large lipid core and high plaque macrophage content. Under these conditions, OCT is not suitable for assessment of positive remodeling because of its limited penetration depth in a large vessel with plaque containing a large lipid core. Gray-scale IVUS remains the standard for assessing vessel dimensions and plaque volume and is the modality of choice for evaluating vessel remodeling; however, it has limited value for evaluating plaque characteristics such as lipid content. Therefore, combined use of OCT and IVUS has been proposed as a potential method for accurate assessment of plaque characteristics and vulnerability (Figure).

As for the application of OCT in the clinical setting, a previous study comparing IVUS- vs. OCT-guided drug-eluting stent implantation found that less aggressive OCT-guided stent sizing was associated with more cases of stent underexpansion and larger reference segment plaque burden compared with IVUS, because of its limited penetration. Previous IVUS studies showed that stent underexpansion was a predictor of early stent thrombosis or in-stent restenosis with both bare-metal and drug-eluting stents. Moreover, larger residual plaque burden adjacent to the reference segment was a predictor of stent-edge restenosis. From these findings, OCT-guided PCI seems to have a disadvantage compared with IVUS-guided PCI in terms of in-stent and stent-edge restenosis and stent thrombosis in the clinical setting, whereas there is no evidence of the clinical outcomes for OCT-guided PCI compared with IVUS-guided PCI.

As reported in this issue of the Journal, Kubo et al have contributed importantly to our evidence base supporting expansion of the application of OCT in both the clinical and research fields. We look forward to their report of the assessment of clinical outcome in OCT-guided PCI using this approximating algorithm, as well as the assessment of adverse coronary events and OCT-derived positive remodeling from such a study.

Acknowledgments
The authors thank Masakazu Yamagishi, MD, PhD, for his assistance with this manuscript.

Disclosures
The authors report no conflicts.

References