Metabolic Considerations in Atrial Fibrillation
— Mechanistic Insights and Therapeutic Opportunities —

Masahide Harada, MD, PhD; Jonathan Melka, PhD; Yoshihiro Sobue, MD, PhD; Stanley Nattel, MD

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice and is associated with morbidity and mortality.1 However, effective therapeutic approaches are limited and novel mechanistic understanding is required for therapeutic innovation.2 The maintenance of cardiac work requires oxygen and nutrient supply that matches the needs created by energy expenditure (Figure 1); accordingly, excitation-contraction coupling and ion channel/pump integrity are closely linked to cellular metabolic conditions.3 AF-induced irregular high-frequency excitation and contraction alter atrial hemodynamics, oxygen delivery, and energy supply, all of which change the metabolic state. Recent work has demonstrated substantial changes in metabolism-related molecules in AF.4–7 Here, we review the evidence regarding the pathophysiological role of AF-associated cellular metabolic changes and their potential value as therapeutic targets.

Cardiomyocyte Energy Metabolism

Adenosine triphosphate (ATP) is an essential energy source for cardiac work, including excitation, contraction, relaxation, and molecular synthesis/degradation. ATP is produced as a principal product of the metabolism of several substrates, including fatty acids (FAs), glucose, amino acids, and ketone bodies, but FAs and glucose are the principal energy substrates in cardiomyocytes. The energy production pathways include (1) glycolysis (in the cytosol), and (2) glucose oxidation, (3) FA oxidation, (4) the tricarboxylic acid (TCA) cycle, and (5) electron-transport chain (ETC) metabolism in the mitochondria (Figure 2). During energy production, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are generated and directed into the mitochondrial ETC to produce ATP via redox reactions. The mitochondrial redox reaction also produces reactive oxygen species (ROS) as a byproduct.

ATP is hydrolyzed (catalyzed) by ATPase into adenosine diphosphate (ADP) + 1 inorganic phosphate (Pi) or adenosine monophosphate (AMP) + 2 Pi, liberating energy. Specific energy-producing ATPases include actomyosin-ATPase in myofilaments, sarcoplasmic reticulum (SR) Ca2+-ATPase-2a (SERCA2a), and sarcolemmal Na+/K+-ATPase. Cardiomyocyte contraction is determined by energy-requiring contractile and Ca2+ dynamics. Ca2+-sensitive actomyosin-ATPase directly provides the energy for myofilament movement. An additional energy-storage compound, phosphocreatine (PCr), generates ATP for actomyosin-ATPase during rapidly increased cardiac work.
Glycolysis and Glucose Oxidation

Glucose is taken into the cell via the sarcolemmal glucose-transporters types 1 and 4 (GLUT1/4) and metabolized via glycolysis in the cytosol. Phosphofructokinase catalyzes situations under the control of creatine kinase (CK). SERCA2a drives Ca\(^{2+}\) from the cytosol into the SR to allow muscle relaxation and maintain SR Ca\(^{2+}\)-stores. The Na\(^+\)/K\(^+\)-ATPase pumps 3 Na\(^+\) out of the cell while transporting 2 K\(^+\) into the cell, maintaining the essential transmembrane ionic gradients in the face of ion movements that occur during the action potential (Figure 2).\(^8\)\(^-\)\(^11\)

Glycolysis and Glucose Oxidation

Glucose is taken into the cell via the sarcolemmal glucose-transporters types 1 and 4 (GLUT1/4) and metabolized via glycolysis in the cytosol. Phosphofructokinase catalyzes
of 4 enzyme complexes (designated I–IV) and an ATP synthase (F0F1-ATPase). Complexes I–IV transfer electrons from electron donors to acceptors via redox reactions. The final electron acceptor is oxygen, producing CO2. The ETC extrudes protons (H+) from the mitochondrial matrix to the intermembrane space to create a H+ gradient across the mitochondrial inner membrane, driving F0F1-ATPase and synthesizing ATP (Figure 2).

Cardiac Work Efficiency
Cardiac work efficiency is defined as the ratio of external work to oxygen consumption. FA metabolism generates more ATP but uses more oxygen than glucose metabolism. For example, the complete oxidation of 1 FA palmitate molecule generates 105 ATP molecules and consumes 46 atoms of oxygen (105/46=2.28), whereas oxidation of 1 glucose molecule generates 31 ATPs and consumes 12 atoms of oxygen (31/12=2.58). FA oxidation generates NADH and FADH2 but glucose metabolism only generates NADH. In the mitochondrial ETC, NADH oxidation at Complex I is coupled to ATP production, whereas FADH2 oxidation bypasses Complex I and pumps fewer protons across the inner mitochondrial membrane.

Hemodynamics and Energy Demands in AF
A variety of studies suggest a role for relative ischemia in AF. Depletion of high-energy phosphates (ATP and/or PCr) and reduced activity of phosphotransfer enzymes occur in pacing-induced heart failure (HF) dogs with an AF substrate. Myofibril loss, glycogen accumulation, altered mitochondrial morphology, SR fragmentation, and nuclear chromatin dispersion resembling hibernating myocardium occur in goats with AF initially induced by electrical stimulation but subsequently maintained by electrical remodeling. Pigs subjected to rapid atrial pacing to mimic AF show increased atrial myocardial perfusion but also enhanced oxygen extraction. Increased venous
lactate concentrations in the atrium, indicative of relative ischemia, result. ATP concentrations tend to decrease during acute stretch-related AF in rabbits.

Abnormalities in atrial blood supply have been shown by several studies. AF acutely increases atrial oxygen consumption while causing atrial distention, higher atrial pressures and lower atrial flow reserve. A study using intracoronary Doppler flow measurements showed impaired atrial perfusion and limited coronary flow reserve in lone AF patients, suggesting microvascular dysfunction.

Pacing-induced AF acutely increases mitochondrial F0F1-ATPase activity in sheep atria. Acute AF in goats decreases PCR without changes in ATP and metabolic enzyme activity, suggesting increased myofibril energy consumption. Thus, the literature indicates that AF is associated with metabolic changes related to decreased oxygen/nutrient delivery and/or increased energy demand.

Figure 3 summarizes the various factors that have been implicated in AF-related metabolic stress. These include changes increasing metabolic needs (enhanced cardiac work and energy consumption) as well as alterations that limit energy supply (limitations on coronary reserve, energy substrate supply and oxygen delivery).

Cellular Metabolic Changes in AF

Fetal Phenotype

During fetal development, glycolysis is a major energy source for proliferating cardiomyocytes. FA oxidation becomes predominant as cardiomyocytes mature and mitochondrial oxidative capacity increases. Glucose metabolism is more energy efficient, so with pathological stresses, energy metabolism switches to a more fetal phenotype.

A transcriptomic study demonstrated that patients with permanent AF have more fetal phenotypes of metabolism-related gene expression than patients in sinus rhythm, showing a marked increase in glycolysis-related gene expression. The activity of 1,6-bisphosphate aldolase, a glycolytic enzyme, increases in permanent AF patients (in whom AF continues indefinitely). Decreased glycolytic endproducts (alanine, lactate) relative to FA metabolism endproducts (acetate) correlate positively with the early onset of postoperative AF (POAF) after cardiac surgery, suggesting that decreased glucose metabolism may facilitate AF.

Myofilament isoform-switching occurs from α-myosin heavy chain (α-MHC) to β-MHC in atrial tissues from AF patients. α-MHC (predominant in adult cardiomyocytes) produces higher-velocity muscle movement at a cost of more ATP and oxygen consumption than β-MHC (which predominates in embryonic hearts), so this switch improves metabolic economy. In addition, β-chain tropomyosin (slow-contracting myofilament with low energy consumption) and myosin light-chain embryonic muscle/atrial isoform expression increase in the atrial tissue of permanent AF patients.

Increased Ketone Body Metabolism

Ketone bodies (acetoacetate, β-hydroxybutyrate, and acetone) are energy substrates produced by the liver from FAs and amino acids, and utilized by extrahepatic organs for energy production. Persistent (continuing >1 week) AF patients show increased β-hydroxybutyrate generation, with an increase in ketogenic amino acids (tyrosine and glycine) and 3-oxoacid-CoA transferase (a key enzyme for ketogenic energy production), suggesting increased ketone-body metabolism in AF, likely as an anaplerotic mechanism.

AMPK Activation

AMP-activated protein kinase (AMPK) acts as an energy sensor and regulates cellular metabolism. AMPK is activated (phosphorylated) by upstream kinases (e.g., liver kinase B1 (LKB1), calmodulin kinase kinase) in response to energy depletion. AMPK compensates for energy depletion by increasing energy production and suppressing energy consumption. AMPK promotes FA oxidation by inhibiting ACC, the rate-limiting enzyme for malonyl-CoA. AMPK activation increases the expression of GLUT1/4 and promotes its trafficking into the sarcolemma, increasing glucose uptake. AMPK also phosphorylates phosphofructokinase-1, enhancing glycolysis. AMPK activation increases in permanent AF patients (in whom AF continues indefinitely), suggesting increased energy production and suppressing energy consumption.

Mitochondrial Dysfunction and ROS Generation

AF has been reported to impair mitochondrial function, decreasing ATP production. AF-related mitochondrial dysfunction causes redox imbalance, increasing ROS production. Excess ROS injures vital genes and proteins, impairs cardiomyocyte function, and promotes AF-related remodeling associated with inflammation. Mitochondrial ultrastructural changes occur in the atrial tissue of AF goats. Rapid atrial pacing increases the expression of 3-nitrotyrosine, an oxidant agent, in canine atrial tissues. Mitochondrial morphology changes (i.e., pale, swollen) in cardiomyocyte cell-lines that are subjected to rapid pacing, accompanied by decreased ATP production and increased ROS production; high-frequency excitation per se causes mitochondrial dysfunction.

Altered transduction of mitochondrial oxidative phosphorylation-related proteins and increased myofilament oxidation have been shown in permanent AF patients. Downregulation of ETC activity, increased proton leakage, and increased ROS production are also identified in AF patients undergoing cardiac surgery. Mitochondrial Complex II/III activity is decreased in permeabilized atrial fibers obtained from patients who developed POAF, corresponding to decreased expression of the gene cluster for mitochondrial oxidative phosphorylation. Cox5b, an enzyme complex of mitochondrial ETC, is responsible for the biosynthesis of ATP. Cox5b protein expression decreases in atrial tissue from AF patients compared with sinus-rhythm controls, suggesting impaired mitochondrial ETC function and energy production.

Mitochondria possess their own mitochondrial DNA (mtDNA), encoding proteins required for essential functions. Patients with mtDNA deletions have increased AF prevalence and decreased concentrations of atrial T. On the other hand, AF patients have increased mtDNA mutation rates and evidence of atrial oxidative injury. In patients undergoing cardiac surgery (22 children/adolescents and 66 adults), mtDNA deletions were increased in the adult AF patients compared with those in sinus rhythm. Pediatric and adolescent patients did not show mtDNA deletions; thus, mtDNA deletion seems to be associated with aging.
AF and Atrial Metabolism: Mechanisms and Therapies

Atrial Remodeling Associated With Metabolic Stress

Electrophysiological Changes
The sarcolemmal ATP-sensitive K+ channel (I\textsubscript{K,ATP}) opens when the intracellular ATP concentration decreases. Increased I\textsubscript{K,ATP} hyperpolarizes the membrane and shortens the action potential duration (APD), facilitating AF-promoting reentry. I\textsubscript{K,ATP} is also activated by 1,3-bisphosphoglycerate, a glycolytic intermediate produced by the catalysis of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gibenclamide, a I\textsubscript{K,ATP} inhibitor, does not affect AF-induced electrical remodeling, arguing against a role for I\textsubscript{K,ATP}. I\textsubscript{K,ATP} channel subunits (Kir 6.2) and I\textsubscript{K,ATP} current density were decreased in persistent AF patients, possibly to counteract AF-induced APD shortening.

In a computational model of AF, altered Na+/K+-ATPase function changed the APD\textsubscript{90}, APD restitution, and dominant frequency of spiral-wave reentry. However, Workman et al reported no difference in the Na+/K+-ATPase current in atrial cardiomyocytes from patients with vs. those without persistent AF. Tran et al reported that increased atrial Na+/K+-ATPase expression and plasma K+ concentration increase the risk of POAF.

Atrial cardiomyocyte metabolic stress reduces the L-type Ca2+ current, SR Ca2+ stores and cellular contractility. AMPK activation antagonizes these effects, and may be important for limiting arrhythmogenic APD shortening in AF patients. Impaired mitochondrial energy production induces Ca2+ transient (CaT) alternans; SERCA2a upregulation attenuates this phenomenon. Ca2+/calmodulin kinase type-II (CaMK-II) is an upstream regulator of Ca2+ handling proteins, and augments cellular Ca2+ dynamics. Mitochondrial ROS directly oxidize the enzyme regulatory domain of CaMK-II and induce CaMK-II activation. Sustained CaMK-II activation leads to abnormal Ca2+ homeostasis, SR Ca2+ leakage and the induction of atrial triggered activity that is implicated in AF initiation (Figure 4).

Contractile Remodeling
AF increases the risk of stroke and thromboembolism in association with cellular hypocontractility. Cardiomyocyte contraction depends on cellular Ca2+ dynamics, regulated by multiple Ca2+-handling proteins. Actomyosin-ATPase and SERCA2a function are linked to cellular metabolism. The Ca2+-handling changes associated with metabolic stress impair contractility and are attenuated by AMPK activation. Thus, metabolic dysfunction and compensation may be important in AF-related contractile changes (Figure 4).

Structural Remodeling
AF induces atrial structural remodeling, characterized by atrial enlargement and fibrosis. Cardiac fibroblasts are crucial for extracellular matrix deposition and fibrosis. Mitochondrial ROS are associated with fibroblast differentiation and cardiac fibrosis, although the mechanisms remain to be clarified. Several studies reported that oxidative stress stimulates mitogen-activated protein kinase.
In an in vitro study, 4 Hz-paced HL-1 atrial-derived cardiomyocytes showed increased ROS production and myolysis; treatment with metformin prevented these abnormalities. These results point to the potential value of AMPK activation in AF therapy.

PPAR-α/PGC-1α Pathway

Peroxisome proliferator-activated receptor (PPAR)-α, a nuclear receptor protein, functions as a transcription factor. PPAR-γ coactivator-1α (PGC-1α) increases the probability of a gene being transcribed by interacting with PPAR-α. Co-activation of PPAR-α and PGC-1α increases the transcription of FA metabolism-related genes. Sirtuin1, an anti-aging molecule, and AMPK are upstream regulators of the PPAR-α/PGC-1α pathway (Figure 5).

Liu et al demonstrated that the protein expression of mCPT-1 and GLUT4 is decreased in atrial tissues from AF patients compared with sinus-rhythm patients, indicating reduced FA oxidation and glucose transport. The protein expression of sirtuin1, PGC-1α, and PPAR-α was also decreased in AF. AF rabbits showed a similar decrease in these molecules; treatment with a PPAR-α agonist (fenofibrate) restored the expression of mCPT-1 and GLUT4 and the activation of the PPAR-α/sirtuin1/PGC-1α pathway, suppressing AF inducibility.

β3-adrenergic receptor (β3-AR) activation regulates energy metabolism and nuclear factor-κB (NF-κB) pathways, which interact with Ca2+-mediated profibrotic signaling. The ROS-generator peroxynitrite induces nuclear translocation of NF-κB in fibroblasts, leading to fibroblast activation and production of transforming growth factor-β (TGF-β), fibronectin, and collagen-I. ROS also activates profibrotic signaling through Smad 2/3, a downstream target of TGF-β.

Genetic deletion of LKB1, an upstream regulator of AMPK, causes spontaneous AF that progresses into a persistent form in mice, mimicking the human disease process. LKB1 deletion causes dramatic atrial enlargement and fibrosis. AMPK fractional phosphorylation increases in paroxysmal (self-terminating) AF patients but decreases in long-standing persistent AF. These observations suggest that loss of AMPK-related metabolic adaptation might contribute to atrial structural remodeling and therapeutic resistance to AF (Figure 4).

Metabolic Modulation as a Potential Therapeutic Strategy

AMPK Activation

AMPK activation with AICAR improves Ca2+-handling and cell contraction of metabolically stressed atrial cardiomyocytes. The use of metformin, an AMPK activator, is associated with a decreased risk of AF in patients with type 2 diabetes. In an in vitro study, 4 Hz-paced HL-1 atrial-derived cardiomyocytes showed increased ROS production and myolysis; treatment with metformin prevented these abnormalities. These results point to the potential value of AMPK activation in AF therapy.

Figure 5. Metabolic modulation and potential therapeutic strategy in AF. ACC, acetyl-CoA carboxylase; β3AR, β3-adrenergic receptor; eNOS, endothelial nitric oxide synthase; SIRT1, sirtuin-1; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α; PPAR-α/γ, peroxisome proliferator-activated receptor-α/γ; TGF-β, transforming growth factor-β; TZD, thiazolidinedione. Other abbreviations as in Figures 2,4.
metabolism by modulating the PPAR-α/PGC-1α pathway. In dogs with pacing-induced AF, β-AR expression increased and atrial electrical and structural remodeling developed, associated with increased oxidative stress.58 Rapid atrial pacings in rabbits increases the atrial mRNA and protein expression of β-ARs, accompanied by reduced atrial APD and increased AF inducibility.60 These changes are associated with decreased expression of CPT-1, FAT/CD36, PGC-1α and PPAR-α, resulting in decreased atrial FA concentrations. β-AR inhibition attenuated electrical remodeling, and improved CPT-1/CD36 expression and PPAR-α/PGC-1α activation.61

Resveratrol, a bioactive polyphenol found in grapes and red wine, has attracted scientific interest because of diverse benefits including antioxidant cardioprotective effects. Resveratrol activates AMPK/sirtuin1 signaling,62 modulating cardiac metabolism. A multifunctional small-molecule resveratrol-derivate compound (C1) alters the function of multiple ion channels (I_{Kur}, I_{Kach}, and I_{ks}) and displays antioxidant properties in human and rat atrial cardiomyocytes.63 C1 treatment also reduced AF-susceptibility in atrial tachypaced dogs.64 In a HF rabbit model, resveratrol activated PI3K/AKT/eNOS signaling and reduced AF susceptibility and triggered activity by preventing atrial electrical, contractile, and fibrotic remodeling.65

PPAR-γ Pathway

PPAR-γ regulates FA storage and glucose metabolism. Thiazolidinediones (TZDs), such as rosiglitazone and pioglitazone, are potent activators of PPAR-γ that have insulin-sensitizing effects via an increase in GLUT4 expression. Pioglitazone prevents atrial electrical and structural remodeling in pacing-induced HF rabbits with an AF substrate.66 TZD treatment is associated with a decreased risk of new-onset AF in patients with type 2 diabetes.67 In paroxysmal AF patients with type 2 diabetes undergoing catheter ablation, pioglitazone therapy was accompanied by reduced AF recurrence rates.68

Inhibition of FA Oxidation

Cardiac diseases are associated with increased serum catecholamine levels; catecholamines induce lipolysis, increasing the circulating free FA concentration and cellular FA uptake. Increased FA oxidation tends to increase ROS production under hypoxic conditions and uncouples glycolysis from glucose oxidation, which increases the generation of lactate and protons, causing cellular acidosis. Reduction of the FA/glucose metabolism ratio may limit oxygen wastage and improve cardiac efficiency.

Ranolazine was initially developed as an antiarrhythmic agent, and has been reported to suppress FA oxidation and to increase glucose oxidation without a concomitant increase in glycolysis or lactate release, improving glycolysis and glucose-oxidation coupling.6 Ranolazine has been reported to improve the redox balance and mitochondrial function in AF rats.67 Ranolazine also inhibits peak I_{ks}, late I_{ks}, and I_{ks} in a dose-dependent manner, and has been shown to suppress ventricular and supraventricular arrhythmia occurrence.68 In a phase II trial, ranolazine was safe and well tolerated in patients with persistent AF.69 A subsequent study showed the combination of ranolazine and dronedarone to be superior to individual drug therapy in suppressing AF occurrence;70 however, the relative importance of the metabolic vs. ion-channel actions of the drug is unclear.

Trimetazidine is an antianginal agent that inhibits FA metabolism and improves glucose utilization by blocking 3-ketoacyl-CoA thiolase. Trimetazidine also activates AMPK signaling in the heart,71 and might have value in AF treatment.

Conclusions

There is a close relationship between cellular energy metabolism and AF, which is clearly associated with metabolic stress. Relatively little work has been done to explore the mechanisms and pathophysiological importance of AF-related metabolic stress. A better appreciation of the role of cellular metabolic changes in modulating atrial electrical, structural, and contractile properties in AF might provide important new mechanistic insights and therapeutic opportunities for management of this challenging arrhythmia.

Acknowledgments

Jennifer Bacchi for excellent secretarial assistance with the manuscript. Supported by the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada.

Disclosures

None.

References

45. Ichikawa T, Segawa H, Koarai A, Yanagisawa S, Kanda M, Glass C, Battaglia E, Young R, Suzuki G. LKB1 knockout mice develop spontaneous atrial fibrillation and provides...
AF and Atrial Metabolism: Mechanisms and Therapies

