Mechanism of Good Back-up Support With a Deep-Seated Guiding Catheter During Percutaneous Coronary Intervention

Kensuke Yokoi, MD; Isamu Mizote, MD, PhD; Tatsuya Shiraki, MD; Seiko Ide, MD; Tomohito Ohtani, MD, PhD; Shungo Hikoso, MD, PhD; Yuji Ikari, MD, PhD; Yasushi Sakata, MD, PhD

Although the attachment site of a guiding catheter (GC) in the contralateral side of the aortic wall is important for back-up force, it is not clear how a deep-seated GC is positioned in the aorta. Computed tomography obtained during percutaneous coronary intervention (PCI) showed how deep-seated GC were attached to the aortic wall.

An 85-year-old man with severe stenosis in the right coronary artery (RCA) underwent PCI. A 6-Fr JR4.0 was engaged to the RCA via the left radial artery (Figure A). To achieve good back-up support, the GC was deep-seated (Figure B). CT showed that the GC was twisted in a spiral (Figure C–E; Supplementary Movie 1).

A 66-year-old man with calcified stenosis in the left coronary artery (LCA) underwent PCI. A 6-Fr EBU4.5 was advanced from the left radial artery. The GC was deep-seated in the LCA (Figure F, G). CT showed that the GC was also twisted (Figure H–J; Supplementary Movie 2).

This imaging shows that a deep-seated GC is twisted in the aorta and that long segments are attached to the aortic wall.

Disclosures
The authors declare no conflicts of interest.

References

Supplementary Files
Supplementary Movie 1. Deep-seated JR4.0.
Supplementary Movie 2. Deep-seated EBU4.5.
Please find supplementary file(s); http://dx.doi.org/10.1253/circj.CJ-18-1338