QUANTITATIVE DETECTION OF CEREBRAL ARTERIOSCLEROSIS BY MEANS OF THE PRESSURE-VELOCITY HYSTERESIS TECHNIQUE

MANABU MIYAZAKI

It is well known that quantitative detection of cerebral arteriosclerosis plays an important role in the treatment of cerebral vascular disorders. However, the ideal technique for clinical use in this field has not yet been developed because of methodological difficulty.

The present author has pointed out that the continuity grade of the cerebral blood flow pattern measured by the ultrasonic Doppler technique and the severity of the cerebral arteriosclerosis is much more significant and therefore the technique is useful for the quantitative detection of cerebral arteriosclerosis.

On the other hand, the pressure and volume pulse pattern of the artery involved several hemodynamic characteristics, i.e., arterial elasticity, dynamics of systole of the left ventricle of the heart and peripheral vascular resistance. Therefore, it may be possible to detect the cerebral arteriosclerosis quantitatively by means of the cerebral arteriogram technique.

In this study, the quantitative detection of the cerebral arteriosclerosis by means of the pressure-velocity hysteresis technique, a combination of the cerebral blood velocity pattern technique and the cerebral pressure pulse pattern technique, was investigated.

Materials and Methods

Materials consist of 17 cases, i.e., 5 normal young males, 6 normal middle-aged males (40 to 59 years old) and 6 patients over 70 years of age with cerebral vascular disorders.

The resistance of cerebral blood flow was measured by the following combination of the cerebral blood velocity pattern and the cerebral pressure pulse pattern.

The cerebral blood velocity pattern was obtained by the ultrasonic Doppler technique in the internal carotid artery. On the other hand, the cerebral pressure pulse pattern was obtained by

\[
\text{Resistance} = \frac{X}{Y} = \tan \theta
\]

Key Words:
- Ultrasonic Doppler technique
- Pressure-velocity hysteresis technique

(Received on January 17, 1974; Accepted for publication on February 19, 1975)

Department of Internal Medicine, Kosai-in Hospital, Suita City, Osaka

the non-invasive sphygmmography in the common carotid artery, close to the bifurcation. In the detection of the cerebral pressure pulse pattern, care was exercised in the attachment of the sphygmmograph, not to affect the original blood velocity pattern, by cautious monitoring.

Both the cerebral blood velocity pattern and the cerebral pressure pulse pattern were recorded on the direct oscillograph and tape, simultaneously and continuously. Further, the Lissajous figure per each heart beat was recorded on the XY-recorder by a combination of the cerebral blood velocity pattern and the cerebral pressure pulse pattern.

As for the calibration of Lissajous figure recording, the figure was obtained under the condition that the peak amplitude of the cerebral blood velocity pattern and the cerebral pressure pulse pattern were quite equal.

As for the measurement of the resistance of the cerebral blood flow, on the other hand, the value which represents the ratio of blood
TABLE I RESISTANCE OF CEREBRAL BLOOD FLOW MEASURED BY THE PRESSURE VELOCITY HYSTERESIS TECHNIQUE IN NORMAL YOUNG MALES, NORMAL MIDDLE-AGED MALES AND PATIENTS WITH CEREBRAL VASCULAR DISORDERS

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Normal young males</th>
<th>Normal middle-aged males</th>
<th>Patients with cerebral vascular disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age (Yrs)</td>
<td>Resistance</td>
<td>Age (Yrs)</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>0.56</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.60</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0.62</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>0.64</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>0.67</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>1.30</td>
<td></td>
</tr>
</tbody>
</table>

Mean ± S.E. 0.618 ± 0.019 0.747 ± 0.112 0.970 ± 0.069

\[p < 0.01 \]

Blood velocity

\[\text{Blood velocity pattern in internal carotid artery measured by ultrasonic Doppler technique} \]

Common carotid arteriogram measured by non-invasive sphygmography

Fig.4. Resistance of cerebral blood flow measured by the pressure-velocity hysteresis technique in normal middle-aged male.

pressure and blood velocity (blood pressure / blood velocity) in the maximum blood velocity was used as a measure of resistance of the cerebral blood flow in this experiment (Fig. 1).

Fig. 2 shows the block diagram of the apparatus.

RESULTS

1. Resistance of cerebral blood flow in each group (Tab. I) (Fig. 3–5).

The resistance of the cerebral blood flow in each group was as follows: normal young males 0.618 ± 0.019, normal middle-aged males 0.747 ± 0.112 and patients with cerebral vascular disorders 0.970 ± 0.069.

From the above results, it is suggested that
the resistance of the cerebral blood flow was significantly increased in the patients with cerebral vascular disorders over that in the normal young males (P < 0.01). The resistance of cerebral blood flow in the middle-aged males was prone to be intermediate between the former two.

2. Calibration of the resistance measurement (fig. 6–8).

The resistance of the cerebral blood flow was altered in accordance with the inequality of the peak amplitude of the cerebral blood velocity pattern and the cerebral pressure pulse pattern. This suggests that equality of the peak amplitude
Detection of Cerebral Arteriosclerosis by Pressure-velocity Hysteresis Technique

Fig. 7. Resistance of cerebral blood flow measured by the pressure-velocity hysteresis technique (peak amplitude of blood pressure more increased than that of blood velocity).

Fig. 8. Resistance of cerebral blood flow measured by the pressure-velocity hysteresis technique (peak amplitude of blood velocity more increased than that of blood pressure). Fig. 6, Fig. 7 and Fig. 8 show the patterns in the same case.

of both patterns is the fundamental item.
3. Resistance of cerebral blood flow under induced hypertension (Fig. 9)

The resistance of the cerebral blood flow was altered under the induced hypertension (intravenous noradrenaline).

The above results suggest that the marked fluctuation in the blood pressure should be taken into consideration in the study.

DISCUSSION

1. Cerebral arteriosclerosis and cerebral blood velocity pattern.

The present author has previously investi-
heart and cerebral vascular resistance).

Therefore, carotid pressure pulse pattern alters in accordance with the various kinds of disorders of the above characteristics, i.e., catacrotic wave in the normal carotid arteriogram vs. anacrotic wave in the patients with cerebral arteriosclerosis, etc.

The above concept suggests that cerebral vascular resistance and therefore the cerebral arteriosclerosis may be detected quantitatively by the carotid arteriogram technique. However, factors other than the cerebral vascular resistance, affecting the carotid arteriogram such as heart failure and carotid atherosclerosis, etc. must be considered.

3. Cerebral arteriosclerosis and resistance of cerebral blood flow

From the above-mentioned two items, a more significant correlation between the cerebral vascular resistance and the resistance of the cerebral blood flow composed of the cerebral blood velocity pattern and the cerebral pressure pulse pattern is suggested. In fact, the concept is supported by the findings in the present experiment.

However, the consideration for the following items is essential in the application of the technique, i.e., clearcut discrimination of the factors affecting the cerebral vascular tone, functionally and organically, such as cerebral arteriosclerosis, cerebral vasoconstriction or dilation due to marked fluctuation in the blood pressure and blood chemical agents, etc.

As for the calibration of the resistance measurement, it may be most important that the peak amplitude of the cerebral blood velocity pattern and the cerebral pressure pulse pattern are equal.

In conclusion, the pressure-velocity hysteresis technique is more advantageous than the cerebral blood velocity pattern technique and the cerebral pressure pulse pattern technique in the quantitative detection of cerebral vascular resistance and therefore, cerebral arteriosclerosis in terms of the consideration of several factors related to cerebral vascular resistance. On the other hand, the correlation between the measure of resistance of the cerebral blood flow in this experiment (the ratio of blood pressure/blood velocity in the maximum blood velocity) and the frequency characteristics of the impedance should be considered.

Summary

The quantitative detection of cerebral arterio-
sclerosis by means of the pressure-velocity hysteresis technique composed of the cerebral blood velocity pattern (blood velocity pattern in the internal carotid artery measured by the ultrasonic Doppler technique) and the cerebral pressure pulse pattern (common carotid arteriogram measured by non-invasive sphygmography) was investigated in 17 normal young males, normal middle-aged males and patients with cerebral vascular disorders. The ratio of blood pressure/blood velocity in the maximum blood velocity was used as a measure of resistance of the blood flow.

The resistance of the cerebral blood flow was significantly increased in the patients with cerebral vascular disorders compared to that in the normal young males. The resistance of cerebral blood flow in the middle-aged males was prone to be intermediate between the former two. The results suggest that the pressure-velocity hysteresis technique is useful for the quantitative detection of cerebral vascular resistance as well as cerebral arteriosclerosis. Several factors related to the technique were discussed.

REFERENCES
2. LAX, H. et al.: Studies of the arterial pulse wave (the normal pulse wave and its modifications in the pressure of human arteriosclerosis, J. Chronic Dis. 3: 618, 1956.