TOTAL VENOUS CAPACITY IN TWO-KIDNEY, ONE CLIP GOLDBLATT HYPERTENSIVE RATS

JIN YAMAMOTO, M.D. AND KOICHI OGINO, M.D.

To assess possible time-related changes in total venous capacity, mean circulatory filling pressure (MCFP) and blood volume (BV, Evans blue) were determined in conscious rats with early, intermediate and chronic phases of two-kidney, one clip Goldblatt hypertension. MCFP, an index of whole-body venous activity, was measured while the circulation was arrested by the brief inflation of a balloon inserted into the right atrium. Compared with sham-operated control rats, Goldblatt rats showed unchanged MCFP and BV in early phase, unchanged MCFP with marginally (0.05 < p < 0.10) decreased BV in intermediate phase, and significantly (p < 0.05) increased MCFP with unchanged BV in chronic phase. Thus, decreased total venous capacity, which is reflected in increased MCFP relative to BV, occurred with a continuation of hypertension. MCFP/BV curves, obtained by measuring MCFP before and after rapid BV change, appeared to shift toward the pressure axis in all Goldblatt groups. There were no significant differences in total vascular compliance, which is the inverse of the slope of this curve and is an index of total venous compliance, between Goldblatt and control groups at any time period studied. These results suggest that decreased venous capacity observed in chronic hypertensive rats may be a secondary hemodynamic state and may not be related to decreased venous compliance.

The suggestion has been made that decreased venous capacity or compliance occurs in both clinical1,2 and experimental3–11 hypertension. Decreased capacity of the venous system, which contains the largest portion of blood, centralizes the blood from the peripheral circulation, thereby changing cardiac filling. Increased cardiac filling in prehypertensive or early phase leads to increased cardiac output, which in turn results in increased peripheral vascular resistance3,4,12–14. Increased cardiac filling in established or advanced phase helps maintain normal cardiac output against increased afterload3,4,12–14.

Mean circulatory filling pressure (MCFP) is a measure of the degree of the filling of the vascular, principally the venous, system with blood, and it is therefore a useful index of the capacity and activity of the venous system.15,16 Decreased total venous capacity, which is reflected in increased MCFP with unchanged or contracted blood volume (BV), has been observed in various forms of hypertension, including early Page hypertension in dogs3, chronic two-kidney, one

Key Words:
Mean circulatory filling pressure
Blood volume

(Received March 19, 1981; accepted July 3, 1981)
Research Institute, National Cardiovascular Center, Suita, Japan
This study was supported in part by research grant for cardiovascular diseases 54 A-2 from the Japanese Ministry of Health and Welfare.
Address for correspondence: Jin Yamamoto, M.D., Research Institute, National Cardiovascular Center, 5-125 Fujishiro-dai, Suita, Osaka 565, Japan

Japanese Circulation Journal Vol. 46, January 1982 21
clip Goldblatt hypertension in rats? 4- to 5-month-old spontaneously hypertensive rats,9,10 early to chronic one-kidney, one clip Goldblatt hypertension in rats,10 and 3 to 8 days' angiotensin II infusion hypertension in dogs.11 It may be possible that experimental hypertension is associated with decreased venous capacity regardless of its form, its stage, or perhaps its renin status.11,17 However, more studies are needed before this notion can be substantiated. The present study was conducted to assess possible time-related alterations in venous capacity during the time from the acute to chronic phase of two-kidney, one clip Goldblatt hypertension (2K, 1C GH) in conscious rats, since a previous observation on this type of hypertension was made only in chronic hypertensive rats using an anesthetic agent which is reported to greatly influence venous capacity.18

METHODS

Male Wistar rats weighing between 250g and 350 g were used. Under ether anesthesia, a silver clip (slit-size, 0.2 mm) was placed around right renal artery with contralateral kidney left untouched (Goldblatt group), while sham-operation was carried out (control group). All rats were maintained on standard rat chow and tap water ad libitum.

Rats were temporarily anesthetized, 3, 14 or 90 days after operation, with ether and then prepared for the experiment.19 The left femoral artery and vein were cannulated with PE-50 tubing. The femoral arterial line was used for recording arterial pressure. The femoral vein catheter was introduced into the thoracic inferior vena cava for recording central venous pressure (CVP). The left carotid artery was cannulated with PE-50 tubing connected to PE-90 tubing for changing BV rapidly. A balloon-tipped catheter was positioned in the right atrium through the right jugular vein. All catheters were brought out at the back of the neck. All wounds were treated with 1% xylocaine during surgery. The rats were allowed 3 hours to recover from surgery and anesthesia. Then each rat was placed in an unconfining box. Pressure readings were determined using Statham transducers and a San-ei polygraph. The pressure baselines were set at the animal's heart level by inspection. The transducer recorder system used was carefully calibrated in a previously described manner.20 After 30 min of adaptation, BV, MCFP and MCFP/BV curve were determined.

Plasma volume (PV) was measured with Evans blue. Approximately 0.1 to 0.2 ml of 0.5 w/v % of Evans blue solution was injected into the femoral vein catheter and 5 min later 0.3 ml of blood was taken through the femoral artery catheter. Evans blue concentration was determined spectrophotometrically at 605 mμ. A preliminary study showed no differences in disappearance rate of Evans blue from plasma within this time-period. BV was calculated as follows:

\[
BV = \frac{PV}{(1 - \text{hematocrit}/100 \times 0.8)}
\]

Japanese Circulation Journal Vol. 36, January 1982
TABLE I MEAN CIRCULATORY FILLING PRESSURE, BLOOD VOLUME, AND OTHER VARIABLES IN TWO-KIDNEY, ONE-CLIP GOLDBLATT HYPERTENSIVE RATS 3, 14 OR 90 DAYS AFTER CLIPPING

<table>
<thead>
<tr>
<th></th>
<th>3 Days</th>
<th>14 Days</th>
<th>90 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goldblatt</td>
<td>Control</td>
<td>Goldblatt</td>
</tr>
<tr>
<td>Number of rats</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>327 ± 3</td>
<td>335 ± 14</td>
<td>303 ± 12</td>
</tr>
<tr>
<td>Mean arterial pressure</td>
<td>148 ± 3**</td>
<td>122 ± 2</td>
<td>171 ± 3**</td>
</tr>
<tr>
<td>(mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central venous</td>
<td>-0.6 ± 0.2</td>
<td>-0.6 ± 0.2</td>
<td>-0.3 ± 0.2</td>
</tr>
<tr>
<td>pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>422 ± 9</td>
<td>408 ± 10</td>
<td>418 ± 8</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>47.0 ± 0.7</td>
<td>44.6 ± 0.6</td>
<td>43.5 ± 1.2</td>
</tr>
<tr>
<td>Plasma volume (ml/kg)</td>
<td>38.6 ± 1.7</td>
<td>42.3 ± 1.4</td>
<td>35.9 ± 1.1</td>
</tr>
<tr>
<td>Blood volume (ml/kg)</td>
<td>62.7 ± 2.2</td>
<td>65.2 ± 2.0</td>
<td>55.2 ± 1.4</td>
</tr>
<tr>
<td>MCFP (mmHg)</td>
<td>7.7 ± 0.2</td>
<td>7.4 ± 0.2</td>
<td>7.7 ± 0.2</td>
</tr>
<tr>
<td>Total vascular</td>
<td>2.95 ± 0.12</td>
<td>3.06 ± 0.13</td>
<td>2.92 ± 0.14</td>
</tr>
<tr>
<td>compliance (ml/kg-mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SE. MCFP = mean circulatory filling pressure, * = p < 0.05, ** = p < 0.01 in comparison with control groups

where 0.8 is the F-cells factor.

MCFP was measured by briefly inflating the balloon and recording arterial pressure and CVP as described elsewhere. While the circulation was arrested with the balloon inflation, CVP increased and reached a plateau within 4 to 5 sec and arterial pressure simultaneously decreased to a lower plateau. The balloon was then quickly deflated and the circulation was restored. MCFP was calculated as follows:

\[
\text{MCFP} = \text{VPP} + \frac{1}{60}
\]

(lowest arterial pressure – VPP)

where VPP is venous plateau pressure, and 1/60 is the ratio of arterial to venous compliance in the rat. To obtain MCFP vs BV relationship, MCFP was also measured immediately after increasing or decreasing BV approximately 6.2 ml/kg (10% of total BV) by rapidly infusing fresh donor blood or withdrawing blood through the right carotid artery. During this procedure, MCFP was measured 10 sec after the start of the BV change and then BV was restored immediately. This BV change did not affect steady-state hemodynamic variables. After completion of the BV change procedure, MCFP was measured again at control BV. The baseline MCFP was the average of the 2 control measurements. MCFP/BV curve was obtained for each rat by regression analysis with the method of least squares. Compliance (Δv/Δp) was the inverse of the slope of this curve and represented total vascular compliance.

Statistical analysis was made using Student’s t-test and level of significance was p < 0.05. All values were expressed as means ± SE.

RESULTS

As shown in Table I, mean arterial pressures (MAP) of Goldblatt rats 3, 14, and 90 days post-clipping were 148 ± 3 mmHg, 171 ± 3 mmHg and 190 ± 7 mmHg, respectively, and were significantly higher than those of their corresponding control rats (p < 0.01 in all time-periods). Also MAP increased with the passage of time in the Goldblatt groups, while it remained almost the same in the control groups. No significant dif-

Japanese Circulation Journal Vol. 46, January 1982
ferences were observed in body weight between the Goldblatt and control groups. Hematocrit was not significantly different between the two groups. However, PV and BV tended to be smaller in the Goldblatt group 3 or 14 days postclipping. In particular, 14 days postclipping, BV was considered to be marginally decreased (55.2 ± 1.4 ml/kg vs 59.7 ± 1.7 ml/kg, 0.05 < p < 0.1). Compared with the control rats, the Goldblatt rats showed no significant increase in MCFP 3 or 14 days after clipping, whereas they showed significantly increased MCFP (8.3 ± 0.2 mmHg vs 7.3 ± 0.2 mmHg, p < 0.05) 90 days after clipping.

As illustrated in Fig. 1, linear regression lines fitted MCFP and BV data points in the MCFP range of 5 to 10 mmHg. Line slopes reflected the mean values of total vascular compliance obtained for each group. The MCFP/BV relationship appeared to shift toward the MCFP axis in a parallel fashion in all Goldblatt groups. As indicated in Table I, comparison of the group mean of total vascular compliance showed no significant differences between the Goldblatt and control groups at any time-period studied. There were also no differences in CVP or heart rate between the two groups.

DISCUSSION

Average MCFP observed in Japanese Wistar rats of control groups ranged from 7.1 mmHg to 7.4 mmHg. The value in normal American Wistar rats was 7.6 mmHg16 or 7.9 mmHg19, and that in Wistar Kyoto rats from American colonies was 7.7 mmHg16 or 8.0 mmHg19. Thus, MCFP appeared to vary only slightly in rats, although it varied considerably in dogs11,15,21

Significant increase in MCFP with unchanged BV in 2K, 1C GH rats 90 days postclipping was the positive finding in the present study. It might be argued that increase in MCFP by 1 mmHg is too small to have a scientific meaning, or is not enough to exert a significant effect on BV centralization. However, it is pointed out that careful setting of the sensitivity and resolution of the transducer recorder system enabled us to deal with such a change9. Moreover, according to Guyton's cardiac output and venous return curves16 if other basic circulatory parameters remain unchanged, a 1 mmHg increase in MCFP can increase cardiac output by as high as 20%. Also unchanged MCFP with a decreased BV, even if statistically insignificant (0.05 < p < 0.1), in 2K, 1C GH rats at 14 days postclipping must be taken into consideration. Therefore, the present findings were interpreted as indicating that total venous capacity was unchanged in the early phase, marginally decreased in the intermediate phase, and significantly decreased in the chronic phase in 2K, 1C GH rats. The result in the chronic hypertensive rats supports the previous work which demonstrated increased MCFP and reduced BV in anesthetized rats with this form of hypertension 9 weeks after clipping. With regard to BV, somewhat smaller BV observed herein was not inconsistent with previous reports2,23

Unchanged venous capacity observed in the early phase suggests that venous alteration is not always associated with all phases of hypertension. The present results imply that venous alteration is a time-dependent hemodynamic consequence of sustained hypertension. The cardiovascular system adapts to a long-standing increase in peripheral vascular resistance on one hand by increasing cardiac muscle size, and on the other hand by decreasing blood-holding vascular capacity, whereby facilitating cardiac filling increase without necessity of BV expansion, and adaptation helps maintain normal cardiac output. Consistent with this implication is an observation on normal baseline cardiac output, significant cardiac hypertrophy, and moderate (although statistically insignificant) elevation of left ventricular end-diastolic pressure in rats with 2K, 1C GH of 6 to 22 weeks' duration3,33. The present findings contrasted with those of the previous study showing early (3 days postclipping) decrease in venous capacity in one-kidney, one clip Goldblatt hypertensive (1K, 1C GH) rats10. The difference may be attributable to the speed of the development of hypertension: hypertension developed gradually in the present 2K, 1C GH experiment, while more acutely in the previous 1K, 1C GH experiment10. Rapidly developing hypertension may require rapid venous change. However, the possibility must not be dismissed that although late venous change is a secondary hemodynamic state in 2K, 1C GH rats, early venous change may be a primary factor in 1K, 1C, GH rats. It is suggested that reduced venous capacity or compliance, with or without BV expansion, contributes to an early increase in cardiac output, and therefore, plays an important role in the initiation of some experimental hypertension3,4,12-14.

A nearly parallel leftward shift of the MCFP/BV curve in the Goldblatt groups implies no...
difference in line slopes (Fig. 1). This finding was quantitatively substantiated by obtaining no differences in total vascular compliance between the Goldblatt and control groups (Table I). Total vascular compliance is regarded here as an index of total venous compliance, since the arterial to venous compliance ratio is very low in the rat.8,19 Therefore, these results suggest no change in total venous compliance in the Goldblatt rats. Hence, it appears that decreased venous capacity in chronic 2K, 1C GH rats is related to changes in unstressed vascular volume (BV at MCFP = 0).11,18,19 These findings were in agreement with results of spontaneously hypertensive rats5 while they were in contrast with observation of decreased venous compliance in 1K, 1C GH rats.10 Total vascular compliance, estimated from MCFP/BV curves, is influenced by reflex venoactivity changes during rapid BV alterations.19,21 Therefore, these different results may possibly come from different reflex responses among hypertensive rats, although no supporting data are available. Yet, the differences may reflect real differences in venous alterations related to basic mechanisms underlying each hypertension, although the precise implication is unclear.

This study offered no information regarding mechanisms of the venous alteration. Possible factors to be considered are increased venous tone due to increased sympathetic activity,14 enhanced responsiveness of veins to sympathetic stimuli,14,24 decreased interstitial tissue compliance,4,6,9,25 and structural venous changes due to “water lodging,”4,6 wall composition change,4,6,26 or unknown humoral substance.27 Although prolonged angiotensin II infusion reduced total venous capacity in dogs,11 angiotensin II may not be a responsible factor in our Goldblatt rats; the hypertensive rats 3 days post-clipping with perhaps the highest activation of the renin-angiotensin system exhibited no change in venous capacity. No increase in circulating noradrenaline was observed in this form of hypertension,28 although sympathetic activity may vary, depending on stages of hypertension or occurrence of cardiovascular complications. Tissue compliance alterations were recently eliminated in case of spontaneously hypertensive rats,9 but they were not studied yet in this form of hypertension. Thus, there is no conclusive evidence accounting for mechanisms of venous changes.

REFERENCES
18. SAMAR RE, COLEMAN TG: Measurement of

Japanese Circulation Journal Vol. 46, January 1982